Learning from Cluster Examples

KAMISHIMA, Toshihiro
Doctor Thesis of Informatics, Kyoto University

2001

Abstract

Learning from cluster examples (LCE) is a hybrid task combining features of two com-
mon classification tasks: clustering and learning from examples. In LCE, each example
is an object set with the true partition for the set, where the true partition is the one that
users consider as the most appropriate for their aim among the possible partitions. The
task is then to acquire a rule for partitioning unseen object sets from this example set. A
method for learning such partitioning rules is useful in any situation where explicit al-
gorithms for deriving partitions are hard to formalize, but where individual examples of
true partitions are easy to specify. Clustering technigues have been of necessity applied
to such situations, despite being essentially unsuited to the problems. We point out faults
in using clustering techniques under such a situation, and explain why the techniques for
LCE task expected to be overcome these faults. We then present a solution technique for
LCE task, and apply the method to the problems in two domains; one with dot patterns

and the other with more realistic vector-data images.

Contents

1 Introduction 1

2 An Overview of Learning from Cluster Examples 3
21 WhyLCElIsImportant, 5

3 Formalization of Learning from Cluster Examples 13
3.1 Noteson The Formalizationof LCE 16

4 The Partitioning Method 21
4.1 How To Maximize The Probability?r [r=7*; {A(0)} , {A(p)}] 25

5 The Learning Methods 33
5.1 Acquisition of The Functionfi(p) 33

5.1.1 Our Algorithm to Estimate The Functiofy(p) 35

5.2 Acquisition of The Functionfy(A(7)) o o oo oo oL 40

6 Experimental Domains and Testing Methods 47

6.1 Experimental Domains: DotPatterns a7

6.1.1 Attributes for Dot Patterns
6.2 Experimental Domains: Vector-data Images

6.2.1 Attributes for Vector-Datalmages

6.3 ATestingMethod

7 Experimental Results and Discussions

7.1 TestingUsingDotPatterns
7.2 Testing Using Vector-datalmages

7.3 DiscusSionNs

8 Conclusions

A The Description Length for the Decision Lists and Example Sets

CONTENTS

91

Chapter 1

Introduction

Clustering is a typical task that involves partitioning a given object set into subsets whose
constituents are mutually similar. Since clustering is carried out based on rules or criteria
given in advance, it can be regardeddasluctiveechnique for partitioning.

In this paper, we advocate the use ofiaductivetechnique for partitioning. In other
words, we try to acquire a partitioning rule from an example set consisting of pairs of
an object set and the true partition for the object set, where the true partition is the one
that users consider as the most appropriate for their aim among the possible partitions.
The acquired rule can then be used for finding the true partitions for unseen object sets
(not appearing in the example set). Our induction task is similar to that of learning from
examples, that acquires a rule for classification from a given example set, except that an
aim of our task is to acquire a rule not for classification but for partitioning. Since our

learning task also deal with partitioning like a clustering task, we give our new task the

2 CHAPTER 1. INTRODUCTION

composite nam&arning from cluster examplesr LCE.

A solution technique for LCE will be useful for any problem where users can easily
identify which partition is the true partition for a given object set, but cannot specify
explicit rules for deriving these partitions. No technique that has been developed for this
aim. To fill the void, clustering techniques have been of necessity used, but they are
not particularly suited to such kinds of partitioning. In this paper, we point out several
faults caused by applying clustering techniques to such problems, and explain how our
techniques are expected to overcome these faults.

We experimentally apply our technique to the problems for partitioning two types
of data. We apply the method to the problems in two domains; one with dot patterns
and the other with more realistic vector-data images. Since there are no other algorithms
designed specifically for the tasks we consider, we cannot show direct comparison results.
Therefore we pay particular attention to confirming whether our LCE algorithm has ability
to acquire useful rules, and to analyzing the behavior of our method.

We proceed as follows. In Chapter 2, we show the importance of the LCE task. In
Chapter 3, we formalize the problem. In Chapter 4 and 5, we then present partitioning
and learning methods respectively. In Chapter 6, we explain experimental domains and
a testing method. In Chapter 7, we show results and discuss them. Finally, Chapter 8

summarizes our conclusions.

Chapter 2

An Overview of Learning from Cluster

Examples

In this chapter, we first present an overview of the LCE task, and then explain importance
of the LCE task.

LCE is a composite task combining features from the techniques of clustering and of
learning from examples. To give an overview of LCE, we therefore begin by reviewing
these existing tasks.

Learning from examples is a task involving the acquisition of a rule for classification
from a given example set. Each example is a pair of an object and a class to which the
object should belong. The acquired rule is used to classify an unseen object into a proper
class. The typical technique for this task in the machine learning field is ID3 [20] or feed-

forward neural networks [2], and the task is often called discriminant analysis or pattern

4 CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

recognition.

Clustering, on the other hand, is a task that partitions a given object set into clusters
that have the properties of internal cohesion and external isolation [7]. The minimum
distance or thé&-means is a typical clustering method in the numerical taxonomy litera-
ture. In the machine learning literature, the task is often cddlaching by observatioor
unsupervised learningCOBWEB [8] and AutoClass [5] are typical examples of such a
learning algorithm.

We have been developing “learning from cluster examples” techniques [12] as an
extension of these two known approaches. The aim is not to find a rule to classify single
objects, or a particular clustering, but to find a rule for partitioning, based on a given
example set. Each example is a pair of an object set and an instance of the true partition
for the object set. Note that, the true partition is the one that users consider as the most
appropriate for their aim or intention. The acquired rule produced by learning from this
example set is used to derive the true partition for an unseen object set. So, in contrast to
learning from examples, LCE involves the acquisition of a rule not for classification but
for partitioning an object set. And whereas the aim of clustering is to partition an object
set based on rules or criteria given in advance, the aim of LCE is acquiring partitioning
rule, that can be applied to any object set from the same domain. In short, LCE takes the

inductive nature of learning from examples, and brings it to the task of clustering.

2.1. WHY LCE IS IMPORTANT 5

2.1 Why LCE Is Important

We will now describe some example cases which fit for the LCE task. Typically, these
will be cases where an true partition for any object set is easy for a user to specify or
identify, but where an overall set of rules for finding these partitions is very hard for a
user to specify concretely and explicitly. A prime example of such a problem is image
segmentation. Suetens et al [27] quoted Kanade’s view of the segmentation problem, that
is to obtain a segmentation which separates out semantically meaningful objects or parts
of objects

To explain the image segmentation task, we give an example of a typical problem
involving the understanding of diagrammatic images. Figure 2.1(a) shows an image of
a logic circuit diagram. Understanding this image is to obtain a proper description of
the form of its logic circuit. In this case, a proper description for the image would be
the logic function @ - b + ¢.” In a typical diagram image understanding process, the
given image is first of all partitioned, so that each cluster depicts an individual primitive
symbol. This partitioning operation is generally calssgimentatiom the machine vision
literature and is a very common technique. An appropriate treatment of the image in
Figure 2.1(a), for example, would be to partition it into clusters with each depicting one
part of a logic circuit diagram. Such a partition is illustrated in Figure 2.1(b), where the
the original image has been separated with thin broken lines. After segmentation, each
cluster is mapped to its proper primitive symbol. From the set of mapped symbols, an

image description can then be inferred.

6 CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

[T

(a) An Original Image

(b) A Partitioned Image

Figure 2.1: Examples of diagram images

2.1. WHY LCE IS IMPORTANT 7

Segmentation is needed in many types of image understanding processes. As in the
example we gave above, it typically corresponds to the task of finding partitions that
satisfy the users’ aims in situations where the users themselves cannot specify general
rules for deriving partitions. Although segmentation problems are frequently encountered,
we don’'t know methods that squarely grapples with the problem. Image segmentation
techniques, for example, are usually designed in a non-systematic manner, relying on the
designers’ experience and intuition. Though such a design approach has been used from
the beginning of machine vision research, the resulting programs are usually restricted to
processing images in limited domains. We can pinpoint a number of drawbacks that arise

from this absence of a systematic approach:

e Segmentation methods commonly rely on the designers’ intuition. An example
of a successful image understanding process is OCR (Optical Character Reader)
systems. These systems are capable of recognizing regions where characters are
written in a given document image. For this specific purpose, the powerful segmen-
tation technique XY-Tree [9] was developed. This exploits a very specific feature
of document image analysis: there are always gaps between lines or between char-
acters. Another example of structure in a domain is RoboCup [14], in which soccer
games are played by Al-controlled robots. These robots have to use machine vision
to understand the game, but structure is artificially introduced by using distinct col-
ors to identify objects. For example, the ball is orange and the goals are either blue

or yellow. These coloring regulations are a significant aid that the robots attempts

CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

to locate objects.

In cases like these two examples, human designers can state rules describing how
images should be partitioned by using image features. In practice, character regions
can be extracted by finding gaps between lines or characters in document images,
and robots can almost always detect a ball by locating an orange region in the
camera image. However, this kind of feature is not common. For example, Minoh
et al have worked on the segmentation of line-drawing images, in which structure
is hard to find [17]. This work succeeded in extracting symbol candidates from
line-drawing images by defining a set of complicated rules for the extraction of
symbols in terms of groups of short line-segments surrounded by a loop. This rule
was intuitively derived based on a great deal of knowledge regarding the domain of
line-drawing images, properties of image processing and cognitive science. In order
to find suitable rules in domains where there is no obvious and constant features,
the designers have nothing but to rely on intuition in addition to very much effort

and knowledge.

Some features are hard to formalize in pragmatic domains. The features, adopted
in the above successful domains, are usually obvious, and is relatively easy to be
represented by formal rules. We call such types of featiyy@sal features How-

ever, there exists unexpected and ambiguous features that have to be taken into
account for segmentation. We call thexceptional featuresVe give an example

of exceptional features in the above Minoh’s work. It is a very frequent event that

2.1. WHY LCE IS IMPORTANT 9

a surrounding loop happens to be cut, and extraction of symbols will be failed by
this event. Such events can be often caused, for example, by stains on an original
diagram, quantization errors in scanning, or the effects of image processing. The
designers therefore have to take into account these events, but it is not easy to iden-
tify the features that how and where these events will occur. Such features are just
what we call exceptional features. (In Section 6.2, we give some practical examples
of such features). In a pragmatic domain, even though designers notice that these
events will occur and try to formalize the features of the events, it is difficult to

formalize such features as concrete rules by hand.

e Segmentation rules require user tuning. The designers of a system will create rules
that express the typical features of the input, but these features will almost always
allow for some variation. Since the nature of these variations are too difficult to cap-
ture intuitively, designers usually have no choice but to leave adjustable elements in
segmentation rules. When applying a segmentation rule to a new image, experience
and knowledge of machine vision is required for the users of the rules. For example,
Minoh’s work on image segmentation requests users to specify a threshold value to
judge the shortness of the line-segments. Thus users without experience of machine

vision techniques will not able to apply these rules.

e Segmentation results are statistically instable. We will show two reasons for this.
Firstly, it is difficult to enforce a strict distinction between training and testing ex-

amples, because partitioning rules are typically created by hand. The designers

10

CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

will naturally seek to find the best segmentation rules by referring to not only their
knowledges of domain but also to available images. Thus, if the human designers
just glancing the test images, they unwillingly gain some information from these
images. Thus, since it is not avoidable to essentially distinct testing and training
images, the performance for unseen images will not be objectively and rigorously
evaluated. This facts weaken statistical stability of results derived by acquired rules

by hand.

Secondly, an amount of information used for generating partitioning rules is re-
stricted. Even though thousands or millions of images are available, the designers
can merely deal with restricted amount of information due to the limitation of hu-

man cognitive ability. This fact also lead to statistical instability.

Other drawbacks have also been noted by Pavlidis, who pointed out the difficulties

in finding partitioning when using several kinds of image features [19]. We believe that

the only way to counter all these drawbacks is abandoning the non-systematic design

approach in favor of a more powerful general method. Our choice for this method is a

design approach based on LCE.

LCE expected to overcome the above drawbacks of existing approaches as follows:

e With LCE the designers only have to providestancesof partitions; it is not re-

quired to explicitly identify features important for segmentation by depending on

their intuition.

2.1. WHY LCE IS IMPORTANT 11

e A learning algorithm can acquire rules that fully represent the domain. By anal-
ogy with learning algorithms for the object classification task, we can also see that
LCE should handle exceptional features. In object classification, attribute values
assigned to objects are often changed by accident, yet algorithm for learning from
examples can still acquire successful classification rules. We are confident that a
similar approach (that is, acquiring a rule with stochastic techniques from an exam-

ple set) will also be effective for acquiring rules for partitioning.

e Just as object classification algorithms can generate rules that can cope with vari-
ance in the input, LCE can generate segmentation rules that users will not need
to tune, and thus knowledge of machine learning or of the domain is not required

when applying rules.

e Finally, since the learning algorithms explicitly require a set of training examples
and can be effectively isolated from exposure to the testing examples, performance
can be fairly evaluated. Since segmentation rules are acquired not by hand but by
statistical algorithms, an amount of information gained from a given examples are
not restricted by human cognitive ability any longer. These two property enhance

statistical stability.

The development of successful techniques for learning from cluster examples will
contribute to the progress of research in any field involving the mapping of raw sensor

signals to abstract notions of objects. We have discussed a number of example domains

12 CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

already, and the technique may also be applicable to problems such as multistrategy learn-
ing [16], the data mining [1] and the identification of genes in DNAs [4]. The rest of this

paper will therefore rise to this challenge by presenting our algorithm for LCE.

Chapter 3

Formalization of Learning from Cluster

Examples

This chapter formally states the task of learning from cluster examples. This task can
be visualized as in Figure 3.1 and consists of two major stages: a learning stage and
a partitioning stage. In the learning stage (Figure 3.1, left), the rule for carrying out
partitioning is acquired from an example set. The example Bét, includes#EX
elements{ (O, , 7}), (02, 73), ..., (Ogex , Tipx)}, WhereO; is an object set and;

is an instance of its true partition. The object €eincludes#0 elements{o’ , 0%, ...,

o#9}. The clustelC” is a subset of), and the partition is a set of these clusters with
elements{C* , C?,... C#7}, such that the clusters are disjointed and every object has
to be an element of exactly one of the’s. In the partitioning stage (Figure 3.1, right),

based on the acquired rule, the true partition of an unseen objeCt sas estimated.

13

14CHAPTER 3. FORMALIZATION OF LEARNING FROM CLUSTER EXAMPLES

object set

instance of
true partition

objects

Al
'l* |
! |
|
|
|
|
|
|
|
|
|
oo ToTTTTT T o T T)
,l" I
2 |
|
|
|
|
|
|
|
|
|
L]
L]
L]
77& 7777777777777777777777777)
|
#EX TCex !
|
|
|
L |
L4 |
|
[) |
° L4 |
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

training example set: EX

Learning Stage

—

unseen object set

Oy
e o °
¢ °
o o

° ® 0
e}
rule 2
for -->| =
partitioning S
@

=7

true partition
for unseen object set

Partitioning Stage

Figure 3.1: An illustration of learning from cluster examples

15

Because many of the algorithms used in techniques for learning from examples adopt
attribute vectors to represent the individual objects, we also adopt them to represent the
individual object set. We introduce the following three types of attributes assigned to

different parts of the object set.

Attributes of Objects This type of attribute is assigned to constituent objects. For ex-
ample, the positions of objects can be represented. We denote the attributes of the

objecto by A(0). A(o) is a vector with# A(o) values,(a'(0),a?(0),. ..,a* 4 (0)).

Attributes of Pairs This type of attribute is assigned to pairs of constituent objects. For
example, the distances between object pairs can be represented. Specifically, let a
pair of objects’ ando’ be denoted by*, and letP be the set of all possible pairs
of objects. ThusP has#O(#0 + 1)/2 elements, and this number is denoted by
#P. We denote the attributes of the object paiy A(p). A(p) is a vector with

#A(p) values(a'(p) , a*(p) , ..., a®*W)(p)).

Attributes of Partitions This type of attribute represents characteristics of entire parti-
tions. For example, the number of clusters can be represented. While values of the
above two types of attributes are rely on only an given object set, those of partitions
are not. Given a partition, values of attributes of partitions are calculated from val-
ues of the above two types of attributes and from a states of the partition. ¥&/hen
is divided into a partitionsr, we denote this type of attribute by(r). A(x) is a

vector with# A(r) values,(a'(r) , a®(7) , ..., a®A™ (7).

16 CHAPTER 3. FORMALIZATION OF LEARNING FROM CLUSTER EXAMPLES

To apply our learning algorithm, the domains of attributes of objects and of pairs
are either continuous numbers or discrete values (as in Quinlan’s ID3 [20]). Also, the

domains of attributes of partitions are real numbers from the intgoval).

3.1 Notes on The Formalization of LCE

We add here two notes relevant to the above formalization.

Firstly, though either attributes of objects or those of pairs are adopted to represent
object sets when applying traditional clustering techniques, we adopt both types of at-
tributes together in our formalization of the LCE task. Below we describe the reason why
both types of attributes are adopted.

It is helpful to sort out partitioning tasks before showing explanation of the above
reason. We suppose that the partitioning tasks can be classified into two categories, and
call each of theselass findingandtrue clusteringrespectively.

In the case of the class finding task, objects are independently generated from a pop-
ulation according to an identical distribution, and these generated objects compose an
object set. In the population, there is a set of classes, and each object belongs to one of
the classes. One can observe object sets themselves, but cannot do classes of the con-
stituent objects. An aim of the task is to partition a given object set into clusters, each
of which consists of objects belonging to the same unobserved class. For finding the true
partition, it is therefore enough to investigate relations between features of each object

and class properties. On the other hand, in the case of true clustering task, object sets are

3.1. NOTES ON THE FORMALIZATION OF LCE 17

generated as a group. Constituent objects are not independent any longer, and the true
partition is determined based on properties of entire the object set. Therefore, to derive
the true partition, mutual influences among the objects have to be taken into account.

The following phenomenon clarify the difference between these two types of tasks.
Figure 3.2(a) shows an object get that is generated from a population (objects are
represented by circles). The true partition for the set consists of two clusterand
C?, each of which is depicted by a surrounding broken line. Objeétando?, belong
to clusters,C! and C?, respectively. Consider then another object s&t,(shown in
Figure 3.2(b)), that is identical except for the objett, The object set is also generated
from the same population. Examining the true partition for thé&seatveal distinction of
two types of partitioning tasks. In the case of the class finding tas&ndo? are sure to
belong to different clusters even in thg. Because objects are generated independently,
the existence of the objeat will not affect weathew' ando? are in the same cluster or
not. In the case of the true clustering task, these two objects might belong to the same
cluster. This is because the mutual influences betweeo’thrd the other objects might
completely change the true partition 0.

To accomplish the class finding task, referring attributes of objects is sufficient for
finding relations between individual objects and the unobserved classes. Therefore clus-
tering techniques that only based on attributes of objects can be regarded as being de-
signed for the class finding task. We may say that some of the clustering or unsupervised

learning techniques, such asmeans or the AutoClass, are classified into this type of

18CHAPTER 3. FORMALIZATION OF LEARNING FROM CLUSTER EXAMPLES

.
Q.
o
9

(a) an object set),, for which the true partition consists of two clusters.

@ 00 ©
O O

(b) an object set),, that is identical to the above set except for the objeCt,

Figure 3.2: Two examples of object sets to explain distinction between two types of par-
titioning tasks

3.1. NOTES ON THE FORMALIZATION OF LCE 19

clustering tasks. In contrast, to carry out the true clustering task, it is required to refer
mutual influences among objects. So attributes representing features of such influences,
i.e. attributes of pairs, is required. The so-called natural clustering tasks or the image
segmentation tasks are typical examples. Clustering techniques that can handle attributes
of pairs can be regarded as being designed for this type of task, and the minimum distance
method is a representative of such techniques.

If a LCE technique can only deal with either of the two tasks, users have to specify
which types of tasks they try to solve. Thus we consider that it is required to define LCE
formalization that can acquire rules to applicable to the above both types of tasks. Itis the
reason that we employ both types of attributes together.

We then mention about using attributes of partitions. To derive the true partitions, one
has to take into consideration not only the local features of object sets but also global
features, i.e. attributes of partitions. For example, the attribute “the numbers of clusters”,
is typical example of such global features. To solve the image segmentation problem,
it is required that proper numbers of clusters have to be specified automatically. If LCE
techniques cannot deal with such global features, one will not able to apply the techniques
to solve the segmentation problem. Therefore, we introduced attributes of partitions to our

LCE formalization.

20CHAPTER 3. FORMALIZATION OF LEARNING FROM CLUSTER EXAMPLES

Chapter 4

The Partitioning Method

In this chapter, we describe our partitioning methods. In general, a partitioning rule is
firstly learned and then the rule is applied for partitioning, but we describe partitioning
method in this chapter for convenience of explanation.

Let 7 be an arbitrary partition for an unseen object@etindr=n* be the event that
ther is equals to the true partition’. To select the most plausible true partition among
possible partitions, we adopt a maximum a posteriori (MAP) estimator, namely, the one
that maximizes the joint probability of an eventr* and all the attribute value vectors

assigned to the object set. The joint probability is
Prm=n", A(r); {A(0)}, {A(p)}], (4.1)

where{A(o)} and{A(p)} are sets of all attribute value vectors assigned to constituents

of O and P, respectively. Sincd A(o)} and{A(p)} only depend on the given object

21

22 CHAPTER 4. THE PARTITIONING METHOD

set and are independent from selectionrptve treat these value vectors as precondition

to determine a distribution of the joint probability. Equation (4.1) is hard to calculate
directly because a number of elememg]++# P+1) is not constant, and this property is

not suitable for most of statistical techniques. We therefore decompose it into the product

of two terms and try to calculate each individually:

Pr {ﬂ-:ﬂ-*; {A(O)}) {A(p)}]) (42)

PriA(m)[m=n"; {A(0)} , {A(p)}] (4.3)

Maximizing the product of these two equations is the key to our method. To maximize
Equation (4.2), we show how it can be manipulated into a more manageable form. The
details of this manipulation are complicated and we defer them until the next section.
Without going into the details of the representation here, the rewritten equation looks

like:

IT Aw = I Ak (4.4)

As for Equation (4.3), we make the assumption that it is free from the preconditions
{A(0)} and{A(p)}. By definition, the value vectad(r) is calculated from the vectors,
{A(0)} and{A(p)}, together with states of a partition, Therefore, the effects dfA(o)}

and{A(p)} are already embedded i(~), even if we didn’t explicitly refer to them as

23

function preconditions. By introducing the assumption, Equation (4.3) is rewritten simply
as the probability density:

Pr [A(7)|m=n*]. (4.5)

This density is calculated by the functigh(A()), which is acquired by the learning
method described in Section 5.2. Consequently, to maximize Equation (4.1), all that we
need to do is to maximize the product of Equation (4.4) and Equation (4.5).

We then describe our procedure to search for the most plausible true partition, that is
achieving the maximum of the above product. According to the literature (e.g., [7]), the

number of possible partitions f@? is

and this number increases exponentially according to the number of objects. Therefore,
finding the optimal partition is not tractable in general, and we rely on the greedy search
algorithm of Figure 4.1 to find a partition that may be locally optimal. In this algorithm,
an initial partition is iteratively changed by applying modification operations. In each
iteration, the operation that maximize the product of Equation (4.4) and (4.5) is applied.
This iteration stops when no operation improves the product.

The details of this algorithm is as follows. In Figure 4.1, Egdand Eq%r) denote
the values of Equation (4.4) and (4.5) whems partitioned intar, respectively. The algo-

rithm begins by creating an initial partition whose constituent clusters are made up of only

24 CHAPTER 4. THE PARTITIONING METHOD

the procedure MAIN
t:=0,7":={C = {0}, Vo€ O}
if (Eq5(7°) > 0) then{

f :=true, EY := Eq5(7°) x Eq4(7)
} else{

f = false, E° := Eq4(n")
¥

start:
t:=t+1,Et .= Et~1
forall (CA € nt~!,CB e nt=1, CA £ CB) {
7 =gt~ = CA — OB + {C4 U CP}, call EVALUATION (')
}
if (f =true){
forall (CA € nt~1,CB e nt=1 , CA £ CP) {
forall (0 € C4) {
7 i=ntmt = CA — CB + {C4 — {0}} + {CPB U {0}}, call EVALUATION (7’)
}
}
}
if (f = false v B! # E*~!) then gotostart
outputri~!
end

the procedure EVALUATION (7')
if (f = false) then{
if (Eq5(7") > 0) then{
f=true, rt .= 7/, B! :== Eq5(n’) x Eq4(n’)
} else if (Eg47’) > E') then{
nt:=n', Bt := Eq4(r’)
}

} else if (EqE7’) x Eq4(n’) > E) then{
nt = 7', Bt .= Eq5(n’) x Eq4(r’)
}

return

Figure 4.1: Our algorithm for searching an true partition

4.1. HOW TO MAXIMIZE THE PROBABILITY: PRr=r*; {A(O)} , {A(P)}] 25

one object, and then refines this partition so as to maximize the product of Equation (4.4)
and (4.5). This refinement is done by applying two types of operatiomserge that
merges a pair of clusters, andreve that moves one element from one cluster to another.
When no partition that achieves a larger value of the product is found, this algorithm stops
and then outputs the current partition as the most plausible true partition. Note that, the
basic role of the proceduevALUATION is to calculate a value of the product. The value

is used to compare two partitions, one is the current, and the other is the one into which
the current is transformed by applying arbitrary operations. HVra UATION procedure
treats separately the condition, where Equation (4.5) has been zero from the beginning
of the algorithm, because the product becomes zero even if a value of Equation (4.4) is
non-zero. Therefore, while this condition holds/ALUATION simply returns the value

of Equation (4.4), and the moving operation is not applied to avoid infinite loop. Once
a partition for which Equation (4.5) is not zero is found, this special case is no longer

invoked.

4.1 How To Maximize The Probability:

Prim=n"{A(0)}, {A(p)}]

Here we give details on the transformation of Equation (4.2) into Equation (4.4) that we
used above.

Because Equation (4.2) refers to magy({-+# P) value vectors as preconditions and

26 CHAPTER 4. THE PARTITIONING METHOD

the number of elements of these vectors is not constant, it is not straightforward to calcu-
late its value. Therefore, we adopt the following technique to calculate it. We first gen-
erate a set of probabilities each of which is calculated based on two value vectors from
{A(o)} and one from{ A(p)}. These probabilities are then combined by using Dempster
& Shafer’s rule of combination [26]0S rulefor short). So it is helpful to describe the

DS rule before moving on to our calculation method for Equation (4.2).

The DS rule is used for combining probabilities based on different pieces of evidence.
Let e be an eventF, be an event set, anH,; be the set of all possible events. Let
P(E.y) be the power set ab 4, i.e. {E, : 'E, C Eay}. Pr|[E,] denotes the probability
that one of the events ifi, occurs, and is called dasic probability Basic probabilities

satisfy these conditions:

Pr(E)>0,Prif]=0, Y Prig]=1
eP(E

Eq All)

Pr[E,; A,] denotes a basic probability fdf, based on the evidencg,. Let [E,; A,] be

an event set for whicRr [E,; A,] is defined. The difference betweé,; A,] andE, is

that the evidencel,, is given together or not. Given distinct pieces of evidencesd, ,

..., A,, an combination of event set§|E£; Ai] , ..., [En; A,]}, is defined as follows.
The|E:; A;] is an arbitrary event séf; € P(E ;) based on the evidenck . The rest of
event sets are the same[as; A, | except for that each of event sets is based on the distinct
evidencesd,,. .., A,. The{[E; A4],...,[En; A} is a combination of these event sets. It

should be noted that event sefs, F», . . ., E,, may be different or identical\{[E1; A1],

4.1. HOW TO MAXIMIZE THE PROBABILITY: PRr=r*; {A(O)} , {A(P)}] 27

..., [En; Ay} be the intersection of such a combination of event sets. According to the

DS rule, the probability of a specific evenbased om evidences is

77777

(4.6)

The numerator of the above equation denotes the suief [E,; A.|'s in the case that
({[E1; A, ..., [En; Ay)} is exactly equal td e} over the all possible combinations of
event sets| [Pr [E,; A,] denotes the product of basic probabilities assigned’{oA, | ,
.. .,[Ea; An] Where[E,; A,]'s are the event sets that satisfy the condition of the sum. Con-
cretely, consider a combination of event sflts;; A, , ..., [E,; A,]}. If the intersection
of the combination is equal tfe}, a produc{ [Pr [E,; A,] iSPr [Ey; Ay] X Pr[Ey; Ag] X

- x Pr[E,;A,]. The numerator is the sum of products in all cases that a condition
N{[Ev; Al ..., [En; Ay]} = {e} is satisfied. The denominator is calculated in the same
way except for summing in the case that the intersection of event sets becomes an empty
set.

We then present how to use the DS rule in our transformation of Equation (4.2).
Strictly speaking, the presumptions and semantics of the probabilities manipulated by
the DS and the Bayesian theories are different. However, it is well known that the DS
theory can be regarded as a generalization of the Bayesian theory. Therefore, we intro-
duce the DS theory to calculate the probability of Equation (4.2). Since the precondition

of Equation (4.2) presents an event that sets of attribute value véctoss} and{ A(p)}

28 CHAPTER 4. THE PARTITIONING METHOD

are simultaneously observed, by definition, the precondition corresponds to an event that
{A(o)} U {A(p)} are observed. This precondition can be treated as evidences in the
context of the DS rule, because both of these can be regarded as basis to determine the
distribution ofr=7*. An overview of the procedure to calculate the probability of Equa-
tion (4.2) is as follows: We first extract subsets frér(o) } U{ A(p)} such that the union

of the subsets exactly equals{td (o)} U {A(p)}. We calculate basic probabilities whose
evidences are each of the subsets, then combine these probabilities by applying the DS
rule. The combined probability can be regarded the probability whose evidence is the
attribute value sefA(o) } U{A(p)}, since the union of the subsets equals to the set itself.

As the subset of value vectors, we choose the subdét!) , A(o’), A(p¥)}, that consists

of attribute values related to an object palf, Letin(p® , 7) be the function that takes 1

if both o' ando’ are in the same cluster of the partitionand 0 otherwise. The following

probabilities,f; (p*), are calculated for each object pairih

fipY) =Priin(p? , 7*) = 1; Ac(p”)),

wherer* is the true partition. The attributd-(p”) is a combination of the three at-
tributes,A(o%), A(o’) andA(p*), which we will fully explain in Section 5.1. The function
fi(p) is acquired in advance from an example set in the learning stage.

To compute Equation (4.2) by using the DS rule to combine the above probabilities,
we first introduce some notations. The funct®n(1l) is defined a®v (II) = {r=n" :

Yr € II}, wherell is an arbitrary set of partition. We udé,; to denote the set of

4.1. HOW TO MAXIMIZE THE PROBABILITY: PRr=r*; {A(O)} , {A(P)}] 29

ml (0l 02, 0% 0f) w2 =(o)(02,0%,0") w* =(o%)(o! 0", o)
i =(0%)(0! 0 0") 7 =(o)(0!0?,0") 7 =(ol ,02)(o",0")
a’ :(01 03)(02 04) 3 :(01 04)(02 03) 2 :(01)(02)(03 04)
TO=(01)(0%)(0? . o) w=(0!)(0%)(0? ,0") wI2=(0?)(0")(o" . o)
I=(02)(o") (0 0%) H=(0")(0")(o" o) mI=(0!)(0?)(0")(o")

Figure 4.2: An example of all the possible partitions for the object{gét; o* , 0 , o*}

all possible partitions fo). Now, let us focus on the set of basic probabilities whose
evidence isA¢(p) of an arbitraryp. The functionf;(p) can then be rewritten as the

following basic probabilities:

Prlev (Il(p)); Ac(p)] = fi(p), wherell(p) = {n : ' € L4y ,in(p, 7) = 1}

Prlev (I(p)); Ac(p)] = 1—f1(p), wherell(p) = Ly, — I(p).

To give an example here, consider the object@et {o', 0* , 0* , 0*}. For this set,

114, is the set of fifteen partitions as shown in Figure 4.2, where the objects in parenthesis
form one cluster. And the s&t(p'?) is {r! , 7 7%, 7% 71}, since these five partitions

are the only ones which satisfy a condition thatand o? are in the same cluster. In
general, an event that both objectspdare in the same cluster, by definition, corresponds
directly to an event thad is partitioned into any of the partitions i(p). We assign a
probability of zero to any subset bify;;, except the two setd(p) andIl(p). As a result, a

set of basic probabilities consists of two non-zero probabiliBesev (I1(p)); Ac(p)] and

Pr[ev (II(p)); Ac(p)], and the zero probabilities assigned to any other event sets except

for these two.

30 CHAPTER 4. THE PARTITIONING METHOD

Such sets of basic probabilities can be drawn for every paiP,imnd hence#P
probability sets can be derived. Since we treat preconditions of probability as evidences,
each of these probability set can be considered as a set of basic probabilities based on
evidences,A(0'), A(o"), and A(p*). And union of these evidences, exactly equals to
{A(0)} U{A(p)}. Therefore, the combination of these probability sets corresponds to the
probability based on the evidended (o)} U {A(p)}.

Using this technique, a process to maximize Equation (4.2) for an arbitr&gas

follows. According to Equation (4.6), the combined probability is

Y [Buide) pePy—(T=T") {H Pr[E,; AC(P)]}
1= zn{{Ea;Ac(pn,vpeP}:w{H Pr{Ea; Ao(p)]}

4.7)

For a fixedp, we choose an event set (I1(p)) asE, if in(p , 7)=1, and a seev (I1(p))
otherwise. This procedure is repeated forjalh P. The intersection of these event
sets exactly consists of one elementt*, and any other combination of event sets does
not derive any sets including the eventr*. This is because, for eaghin P, m=x"*

is always an element of eithev (II(p)) or ev (II(p)). Consequently, in order to find
the combined probability, we should choose a basic probalilifev (I1(p)); Ac(p)], if

m=n*is an element oév (I1(p)), andPr [ev (II(p)); Ac(p)] otherwise. The numerator of

Equation (4.7) is represented as follows:

1 Prievp)): Acp)] x [Priev@(p); Ac(p)l,

peP+ peEP—

4.1. HOW TO MAXIMIZE THE PROBABILITY: PRr=r*; {A(O)} , {A(P)}] 31

whereP* is a subset of” consisting of pairs that satisfy the conditiorip , 7) = 1, and
P~ is its complementary set. For example, in the case of Figure 4.2, for the partition
P* would be{p'?, p'* | p**}. By introducing the functiory, (p), the above equation can

be rewritten as

II re) < I Aw), (4.4)

wheref,(p) is1— fi(p). Looking once more at the example of Figure 4.2, the probability

assigned tar* in this example would be:

AE2) A0 AE) < AP AEP) L07).

The denominator of Equation (4.7) has the useful property of being constant for any
possible partition. This is because the combination of event sets whose intersection be-
comes an empty set is independent of the choice.of herefore, since Equation (4.2)
is proportional to Equation (4.4), the maximization of Equation (4.2) can be achieved by
just maximizing Equation (4.4). Thus, to achieve our overall goal of maximizing the joint

probability expressed in Equation (4.1), we can maximize:

fa(Am) > T Aiw) > T A (4.8)

We add here a comment on the denominator of the combined probability. Calculating

32 CHAPTER 4. THE PARTITIONING METHOD

the value of this expression requires examining the condition where the intersection of the
event sets becomes an empty set. This occurs only when there is a contradiction among
the event sets. For example, consider an object set that consists of three objettnd

o®. For the set, if one observed an event thidtandp'? is in the same cluster, one never
observe an event that? is not in the same cluster. Thus the intersection of combination

of event setsev (I1(p'2)), ev (II(p*?)) andev (II(p*®)), becomes an empty set, and the
probability assigned to this combinatiofy,(p*?) f1(p*?) f1(p**), is adopted as a term of

the denominator. There are two more combinations that lead to such a contradiction, and

so the denominator becomes:

- (f LA+ AEDRED L)+ R A <p23>>~

In brief, the role of the denominator is to normalize the combined probability by elimi-
nating the probabilities assigned to the combinations of events that lead to such a contra-

diction.

Chapter 5

The Learning Methods

In this chapter, we present the method for acquiring the two functjg(s) and f>(A(r))

from the given example sek X, in the learning stage.

5.1 Acquisition of The Function: f(p)

As described in the previous chaptgr(p) is defined as:
fi(p7) =Prlin(p? , 7*) = 1; Ac(pV)].

This function is applied in two steps. At first, the value vecter§y’), A(o’), andA(p¥),
are combined into one value vectotg(p¥/). The function then derives the probability
when the combined vector is given. The actual acquisition procedure of the function itself

is also composed of two steps: a given training example set is first transformed into an

33

34 CHAPTER 5. THE LEARNING METHODS

example setex;, and then the function is acquired from this new set.

To acquiref;(p¥), it is required examples that are pairs of an observed value vector
and a target value, i.eAq(p*”) andin(p” , 7*) (a common format for the technique of
learning from examples). We therefore transform a given exampl& Seinto a set of
examples in this form. Each example is generated from an object pair in an object set
from the original example set. Thus, the number of elements in the transformed example
set is the sum of the object pairs in the training example set#e:, = 7" 4P,

We denote a transformed example (Y- (p™) , c), where the objects and object pairs are
assumed to come from the same exaniple, 7). And where the classtakes the value

in(p¥ , 7%), so thec become9) or 1. The value vector-(p*) is calculated by combining

the three attributed (0%), A(¢’), and A(p”). Our combination procedure is defined so as

to be invariant under the ordering of indices, so that the value of the combined attribute
Ac(p¥) is always equal todq(p’*). To produce such combined vectors, we copy all
the values of4(p) into the top of the combined vector. Additional elements are then
concatenated to this combined vector by considering, one by one, the elements of the

original vectorsA(o’) and A(¢’). Thes-th elements of these original vectous$(o’) and

a®(0’), are merged and added to the combined vector according to the following rules:

e |f these twos-th elements take continuous values, the smaller value is added as an
element of the combined vector, and the larger value is added as the subsequent
element. That is, if the smaller value is added to the combined value ashhe

element, the larger value would be added agthe1)-th element.

5.1. ACQUISITION OF THE FUNCTIONZ(P) 35

¢ If these twos-th elements take discrete values, the values are merged into one and
added into the combined vector. If the number of possible values for the original
attribute isd, the merged attribute can take one of a possiblet 1) /2 values. For
example, if the possible values ang$” and “no”, the merged value can take one

of the values yes-yes”, “ yes—nao”, or “no—no”.

As an example, consider the value vectbip™) with two elements, the first discrete
and the second continuous, and the vectbis) and A(o’) both of which are with two
elements, the first continuous and the second discrete. Given the attribute Agitigs=
(yes, 100), A(o") = (50, yes), andA(0’) = (10, no), the combined attributel-(p*)

would be(yes , 100, 10, 50 , yes-no).

5.1.1 Our Algorithm to Estimate The Function: f(p)

We next describe the algorithm to estimate the funciigip) from the transformed ex-
ample setex;. The example set can be simply represented by a forf4f , ¢;) , (Az,
c2) -y (Ager, , Cateay) }» Whereey = {0, 1} is a value of the functiom(p, 7*), andA; =
(a',a?, ..., a”*) denotes the combined attribute value vecter(p). This algorithm
finds the conditional probability functio®r [c;;=1| Ay| for an unseen vectot,;.

Before turning to the acquisition method of the probability function, we first present
the decision lists[31] used for representing the function. LEtbe a term that is the
conjunction of literals.. The literalL is a logical function that can take the binary values

true or false when an attribute valuesis given, as follows:

36 CHAPTER 5. THE LEARNING METHODS

¢ for attributes: that take continuous values, the three possible forms of the literal are
0, <a), (0, <a<¥,),and(a < 0,), whered, andé,, are proper threshold values.
Such a literal takerue whenever the value satisfies the condition specified by

the literal.

e for attributes: that take discrete values from some Bet literal has the forne =
v Vg V- Voug), Wwherev , ... vy are elements of the sét. This literal takes

true whenever the value af is one ofv, , ..., vg.

Decision lists are defined as a pairing of an ordered term{dist 75 , ..., T,,,_1 , true)

and a probability listPr ,Pr,,...,Pr,,), wheretrue is a term that always outputsie.
Specifically, when the unseen value vectir is applied to a term list in the ord&f , 75,

..., true, if T} is the first term that outputs true, the decision lists output the value of the
corresponding?r ;, as the conditional probabilitlpr [c;,=1|Ay].

We note here the reason why we adopt not decision trees but decision lists. First,
Pagallo and Haussler [18] have pointed out that the size of the decision trees tends to
drastically increase if the concept to be learned is disjunctive. Secondly, the size of the
example set drastically decreases, since the decision trees are usually acquired by a so-
called divide-and-conquer procedure and the example set is divided whenever a new node
is created. This property weaken stochastic stability.

Our algorithm for acquiring the above decision lists is described in the Figure 5.1.
This algorithm finds the most probable decision list based on Rissanen’s MDL (Minimum

Description Length) principle [24, 25], which has been successfully adopted in learning

5.1. ACQUISITION OF THE FUNCTIONZ(P) 37

the procedure SEARCHING
example sef := ex;
term no. i:=0, decision lisDL := ()
conditional probabilityPR := ()
do{
1:=1+4+1
the number of updating timegs:= 0
j-th updated ternfy := true
do{
Jji=J+1
Let Ly be the literal maximizing the evaluation function
andG'p be the function value for thég J[
if (G < 0) then{
T/ :=T/~', gototerm_end
}

T =T "'ALp
} until(every classes of elements${77) is all 0 or all 1)
term_end:
if (77 = true) then gotdist_end
Add T! to DL andPr (S(T7)) to PR T}

S:=8-58(T7)
} until(every classes of elementsshis all 0 or all 1)
list_end:

Add true to DL andPr (S) to PR

the procedure PRUNING
total code lengthf := ¢(ex; , DL)
the number of terms := i + 1
while(m > 1) {
S = S(T,) US(Th-1)
DL :={(T\,..., T2 ,true), PR := (Pry,...Pr,,_o,Pr(s")
0= E(G(L’l s DL/)
if (¢ < ¢') then gotonoprune
DL:=DL',PR:= PR ,m:=m—-1,{=1/
}
noprune:
outputDL, PR
end

Figure 5.1: Our algorithm for searching decision lists

38 CHAPTER 5. THE LEARNING METHODS

from examples techniques [15, 21, 29]. This principle selects the best model from a given
set of candidate stochastic models and is stated as “select the model in the observed data
that permits the shortest encoding both of the observations and the model.” Grounded
in this principle, we formalize a set of stochastic models representing the conditional
probability functions and specify a coding scheme for this set. In Figure 5.1, we show
the procedure for finding the decision list that permits the shortest code length, and the
coding schemes of the decision lists are summarized in Appendix A. We here make some
remarks related to Figure 5.1.

This algorithm is composed of two procedureéSEARCHING and PRUNING. The
former is the procedure for finding a decision list by repeatedly adding terms so as to
achieve the shortest code length and then removing examples satisfied by the list. In the
latter procedure, the acquired decision list is polished.

We first discuss the evaluation functiofy and the literallLz at the markf in Fig-
ure 5.1. This evaluation function is designed to find the term that is useful for achieving
the shortest code length. L&{77) be the subset of the current example$état consists
of elements that satisfy the condition specified by the térniet #5(77) be the number
of elements inS(77), and/¢(S(13)) be the code length fo$(77). Assume two term§}

andT; that satisfy the conditios(77) D S(T3). If the condition

() +6(5(1)) _ U(T3) + £(5(1T3))
#5(1h) #5(12)

5.1. ACQUISITION OF THE FUNCTIONZ(P) 39

is satisfied, the evaluation function is
G(Ti , To) = (((T0) + (S(T)) = (£(Tz) + US(T2)) + £(S(T3) — S(T2)).

and otherwis®, where((T}) is the code length faf;. TheL is the literal that maximizes
the evaluation functio(7/~" , 77~" A L) over all literalsL that satisfy the condition
S(T?~") D S(T7~" A L). G is the output of the function at that time.

Next, we comment ofr (S(77)) calculated at the marki. Because we adopt the

coding scheme of example sets in [29], this is defined as:

_#S(T) +1

Pr (S(T‘j)) = W,

where S*(T7) is composed of the elements f{77) whose class labels afe Details
about the code length of decision lists and example sets are shown in Appendix A.

We finally add comments on the reason why we adopt our original algorithm, despite
many algorithms for estimation of posterior probabilities have been developed to date.
These algorithms are designed so as to try to minimize the expéeteldss, which
is the ratio of incorrectly classified examples. For example, the method for acquiring
decision tree based on MDL principle [15] using coding scheme dealing with tHess.

Most of existing algorithms designed for this purpose. In contrast to this, we introduce
coding scheme aiming to minimize the KL divergence, which measures how closely the

probability is estimated. Since, for the function used in the LCE task, it is important

40 CHAPTER 5. THE LEARNING METHODS

that the ability can estimate probability as precisely as possible, we develop and use an

algorithm having the property.

5.2 Acquisition of The Function: fy(A(n))

We next describe the method for acquiring the functief()) that is required for the
calculation of Equation (4.5). This function is the conditional probability density(af)
given the eventr=r*.

Our algorithm to derive the density function requires an input whose form is a set of
attribute value vectors. Therefore we transform the original training examplé’sét,
into this form. Recall that the séf X is composed of examples of object sétswith
their true partitionsr;. For each element of this set, we calculate the attribute value vector
A(m7). We refer to the set of these vectors as the transformed examplese®jnce each
element of thezz, follows the densityPr [A(x) , m=7*], we can derive thgy(A(x)) by
estimatingPr [A(r) , 7=n*] from theex, and then dividing this byr [r=7*]. However,
the Pr [r=x*] cannot be estimated pragmatically. This is because the number of possible
partitions is enormous in comparison to the number of given examples. Therefore we
assume thaPr [r=7*| is uniform, so thePr [A(7) , 7=n*] come to be proportional to
fo(A(m)).

Now, all we have to do is estimatiry [A(7),7=7*]. With the setz, as its input, our
algorithm described below can calculate the density. We enmgignession tree§3] to

represent the density function. So before turning to explain our algorithm, it is helpful to

5.2. ACQUISITION OF THE FUNCTIONF,(A(r)) 41

nni

a'(1) < 0.5

/ tns3

la2(m<0.1| C 2

o5 &

Figure 5.2: An example regression tree

nn

describe the regression trees. An example of a regression tree is shown in Figure 5.2. The
tree in this figure has terminal and non-terminal nodes. Each non-terminal node, shown by
a rectangle, has one threshold, one index that specifies which eleméqt)ax$hould be
compared, and two branches connecting it to other nodes. In addition, each terminal node,
shown by a rounded rectangle, has a probability density value. When a fixed value vector
A(m) is given, the proper probability density value is found by recursively descending
through the regression tree to a terminal node, as follows. First, the vector is compared
to the threshold specified at the root node of the tree (for the specific index indicated at
the node). If the value is smaller than the threshold, then the left branch of the node is
descended. Otherwise, the right branch is descended. If the next node in the tree is also
non-terminal, the process of comparing the specified attribute value and the threshold at
the node is repeated, until a terminal node is reached. At a terminal node, the proper

probability density value is simply the value specified by the node. For example, suppose

42 CHAPTER 5. THE LEARNING METHODS

that the vectof0.3 , 0.5) is applied to the regression tree in Figure 5.2. The first value
of the vector is compared to a threshold0os at the root node (labeledh;). Since the
value is smaller than the threshold, the left branch is traced and thenmads found.

The nodenn, is also non-terminal, so the second value of the vector is then compared to
the threshold).1. As a result, we reach the terminal nate. This gives a value df as

the target probability density.

Thus, if we can compute a regression tree, we can find the probability density of
partition attributes. To do this, we use the algorithm as follows. This procedure is also
grounded in the MDL principle. We describe a set of stochastic models and define a
scheme for coding both of the models and the given example set. Then, as the function
f2(A(m)), we employ the model that permits the shortest code length.

We here present the coding scheme for the regression trees, that are used for repre-
senting the target function. The code length for a structure of the regression tree equals
the total number of nodes. The article [21] presents a full explanation of the code length
and of the coding scheme for the tree. For each non-terminal node, a threshold and an
index at the node must be encoded. The threshold is encoded in the same scheme as that
used for the threshold of the decision lists in Appendix A, and the code length for the
index islog #A(m). Note thatlog is logarithm whose base numberdsindin denotes
natural logarithm in this paper. The scheme presented here makes it feasible to specify
an arbitrary regression tre®7', with code length/(RT). Next, an example setxs,

must be encoded by using this regression tree. According to [32], the total code length is

5.2. ACQUISITION OF THE FUNCTIONF,(A(r)) 43

approximated
1
l(lexy , RT) = ¢(RT) + {—log L(exs|RT) + §#TN(loge + log #exs)},

whereL(exy| RT) is the likelihood #ex is the number of examples ix,, and#7' N is
the number of terminal nodes RII". The likelihood ofex is defined as follows. LEf'N
be the set of all terminal nodes in thd", andtn,, be its element. Le#ttn, be the number

of examples irez, that reaches the terminal notte.. L(exo|RT') is defined as

L(exy|RT) = H Pr [tn,] #tn

tn.ern

wherePr [tn,] is the probability density at the nodie, defined as:

#in,
#exo x V(R(IN,))

Pr[tn,] =

R(tn,) is the region for a value vector such that if the vector rangés.), it reaches
the terminal nodén,, andV (R(tn,)) is the volume ofR(tn,). For example, in the case
of nodetn, in Figure 5.2, any value vectors within the rangér) < 0.5 anda?(r) >
0.1 that are inputted to this regression tree would reach the tredeSo R(tn,) is (0 <
a'(m) < 0.5) A (0.1 < a?(r) < 1)), andV(R(tny)) is 0.45(= (0.5 — 0) x (1 —0.1)).

In order to acquire the functiofy(A()), we must find the regression tree that permits

the shortest total code length® X, , RT'). For this purpose, we introduce an algorithm in

44

CHAPTER 5. THE LEARNING METHODS

the procedure MAIN

exy = {A(m), A(m2) , ..., A(Taes,) }: the example set

RT := (TN, NN): a regression tree whose root node is terminal
TN := {tn; }: a set of terminal nodes tr{; is a root node)
NN := {}: a set of non-terminal nodes

for s from 1 to #A(nw) {

0° := 6 x (standard deviation of*(7y) , a®(m2) , ..., a*(Tpew,))/#eT2
}
start:
RTpy := RT

foreachtn’ in TN {
for s from1to #A(rw) {
Let! andu be the lower and the upper bound
of the s-th attribute of the regio&(tn’) respectively
for d from 1 to oo {
q=(1/2)"
if (¢ < 0®) then gotocheckend
for ¢ from 1 to 241 {
0:=q(2t—1)
if (I <60 < u)then{
RT := (TN, NN)
NN’ := NN U nn’
(nn’ is the terminal node whose thresholdis
and is placed at the position used tothg
TN := {TN —tn’} U {tn® tnZ 1}
(tnk, andtn? are the right and the left node of of the’)
if ({(exs, RT) < {(exy, RT)) then RT:= RT
}
}
}
checkend:
}

}
if (RT,y # RT) gotostart

end:
output RT.¢
end

Figure 5.3: Our learning algorithm for searching regression trees

5.2. ACQUISITION OF THE FUNCTIONF,(A(r)) 45

Figure 5.3. This algorithm adopts a divide-and-conquer strategy that recursively divides
a given training example set. Initial regression tree consists of only one terminal node,
and represents an uniform density function that is always at coristdhe current tree is
iteratively modified. This modification operation is as follows: One of terminal nodes of
the current tree is replaced with new non-terminal node and two new terminal nodes are
added at the branches of the new non-terminal node. The replaced terminal and the new
non-terminal node are selected so as to maximizeX, , RT'). Finally, this algorithm

stops when no improvement is feasible, and outputs the current tree.

46

CHAPTER 5. THE LEARNING METHODS

Chapter 6

Experimental Domains and Testing

Methods

We have applied our technique of learning from cluster examples to two test domains: dot

patterns and vector-data images.

6.1 Experimental Domains: Dot Patterns

Segmentation of dot patterns is a basic problem for clustering that features dots scattered
in a 2—dimensional space of the same width and height, as shown in Figure 6.1. Here, all
the dots from the same cluster are depicted with the same type of symbols. These dots
are usually generated by considering a number of circular regions that are also placed in
the space (in the figure, these regions are depicted by dotted lines). These circles are used

to create clusters by generating dots according to a Gaussian distribution (note that if any

a7

48

CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

Figure 6.1:

An example of a dot pattern

6.1. EXPERIMENTAL DOMAINS: DOT PATTERNS 49

dot falls outside the 2—dimensional space in this generation process, it is discarded and a
replacement is generated). For each region, the mean of the Gaussian distribution of its
dots is at the center of the circle, and the we use the following 2-dimensional Gaussian

mixture distribution:

m

flx,y) = ZZjN(%y;Mjanan%
L exp<_(l"—uj)2+(y—’/j)2),

2
2aj

N(CUay;Mjan’Uj) 277'0'2
J

wherem is the number of clusters, specifies the ratio of mixingy; andv; are means

of thez andy positions, andr; is a standard deviation. This standard deviation differs
depending on the types of example sets. We prepared three types of example sets with
varying degrees of overlap between the different clusters. To create each set, we first
randomly generated a value for, and created: random points within the space. We
then created circular regions of radius, 1 < j < m around each of these points, by
generating-; randomly under the constraint that each of the resulting circles must touch
at least one other (as shown in the example of Figure 6.1). Depending on the type of
example set we wanted to create, we then assigndd be eithero; = r;/3.0 (for a
separatecexample set);; /2.5 (for atouchingexample set) or; /2.0 (for a overlapping
example set). Note that we force the covariance to be zero, namelyatind; deviations

are equal.

50 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

Our three example sets each contain 10 to 1000 elements. Each object set in the
example sets contains 50 dots composing two to four clusters. Four attributes of objects,
eight attributes of pairs and one attribute of partitions are used, as detailed in Section 6.1.1.

To provide a comparison for our learning from cluster examples technique, we also
applied the following EM algorithm (a common clustering technique) [6] to the task of
partitioning the dot patterns. Let be the number of observed objects dng, y;) be
the position of thei-th object. The EM algorithm leads to the parameter values of a

distribution function so as to maximize the log-likelihood:

log L(z1, .oy @n s Y1 yeeeyUn) = Zlogf(xi,yi).
i=1

After the parameter values are estimated, each object is classified intettheluster
such that:

k = argmax z; N (z; , Yi; f1j , Vi » 05)-
7j=1,....m

The initial conditions we used for the EM algorithm parameters were as follows. First,
we assumed that the correct number of clusters$ was explicitly given asn, and then

we initialized all thes;’s to S/6 (S is width or height of the 2—dimensional space) and all
the z; to 1/#x*. As an initial guess at the actual clustering, we assumed that the means
of the clusters were equi-distantly placed on a circle of radisis< S in the center of the

space.

6.1. EXPERIMENTAL DOMAINS: DOT PATTERNS 51

6.1.1 Attributes for Dot Patterns

In this section, we give full explanation of attributes that is adopted in our experiments.
We select these attributes by using the primitive feature selection technique as follows.
First, we select widely used attributes as candidates. In this selection, we reject attributes
that need laborious tuning or too much computation resources. We then extract many
attribute subsets from the set of the candidate attributes. Finally, by using testing method
described later, we adopt the best among these attribute subsets. Note that, it is certainly
clear that selection of attributes will affect the performance of estimation. But this at-
tribute selection problem is irrelevant to the main subject, and to follow up this matter
would take us beyond the scope of this paper. Very many types of attributes have been de-
veloped in the vision literature, and the attribute selection problem is a major topic in the
machine learning literature. We suppose that results obtained by these works will helps
to solve our attribute selection problem.

The attributes assigned to objects and their pairs are briefly shown in Table 6.1. All
the attributes of objects should be fairly self-explanatory, being the X and Y coordinates
and the Euclidean distances to théh nearest neighbor (the value of paramétevill be
introduced below) and to the nearest dot. As for the attributes of pairs, the first attribute
is simply the Euclidean distance between two dots, but the second and the third attributes
require the imposition of a total order on the dots. Let us call the dots in the do#ipair
and B. First, the dots are ordered according to their Euclidean distance fronh, dotd

the position index number of ddg in this order is found. Then, the dots are ordered

52

CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

Attributes of objects

Attributes of pairs

Eal A

X—position
Y—position
Distance to thé-th nearest dot

Distance to the nearest dot

1. distance between two dots

~ o o b

. Gabriel Graph factor
. Relative Neighborhood Graph factor
. Length of the longest edge on its MS

. The number of edges on the MST p4

The smaller position index number
ascending distance order

The larger position index number in
cending distance order

k-th nearest factor

path

joining the dots

Table 6.1: Attributes for dot patterns

bT

ath

6.1. EXPERIMENTAL DOMAINS: DOT PATTERNS 53

according to their distance from dét, and the position index number of ddtin this
order is found. The second attribute of pairs then the smaller of these position index
numbers, and the third is the larger.

The fourth attribute of pairs is related to Wong and Lane’s work [30]. They employ

the following factor for clustering:

wherek is an adjustable parameter. The functigy(-) gives the volume of a region
centered on a dot with radiug, the distance to thé-th nearest dot. In 2—dimensional
space, this is simply(-) = 7r?/2. We employ Wong and Lane’s factor as the fourth
attribute of the dot pairs, with parametefalso mentioned above in relation to the third
attribute of objects) set to the valuedlin #0, as suggested in [30].

The fifth and sixth attributes of pairs are related to Urquhart’s work [28] on graph
theoretical clustering. Urquhart proposes a clustering technique basedabrial graph
(GG) and aelative neighborhood grapfRNG). The GG is a graph having edges between
two dots, A and B, if no other dot lies in the circular region that can be constructed
between them as shown in Figure 6.2(a). The RNG is similar to this, except that the area
considered between the two dots is the region described in Figure 6.2(b). We adopt the
number of dots in these two types of regions as the fifth and the sixth attributes of pairs in
Table 6.1.

The seventh and eighth attributes are related to Zahn’s pioneering work on graph the-

54

CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

B

(a) Region for a Gabriel Graph

=

(b) Region for a Relative Neighborhood Graph

Figure 6.2: Dot-free regions in Gabriel graphs and relative neighborhood graphs

6.2. EXPERIMENTAL DOMAINS: VECTOR-DATA IMAGES 55

oretical clustering [33] that employswainimal spanning tre@VIST). The MST is defined

as a tree connecting all the dots in a given dot pattern for which the sum of the lengths of
its constituent edges is minimal among all possible trees. There is only one path between
any pair of two dots on an MST. For the dotsand B, we adopt the length of the longest

edge on the MST path between them as the seventh attribute and the number of edges on
this path as the eighth attribute.

Finally, we adopt the following one attribute of partitions:

#T
#0

a'(n) =

6.2 Experimental Domains: Vector-data Images

Vector-data images are often used in the process of diagram image understanding. A
vector-data image is represented by using line-segments and is typically used to represent
images drawn with thin lines, such as diagrams or maps. A line-segment is a straight line
connecting two end-points. Each line-segment corresponds to an object, and an entire
image does to an object set. Partitioning this type of object set is a more realistic task than
dot pattern partitioning.

We generated our example set of vector-data images by transforming handwritten
logic circuit diagrams. Handwritten diagrams were scanned by an image scanner, and the
common image processing techniques of thinning and vectorization were then applied.

The original handwritten diagrams consisted of five kinds of circuit parts: AND-gates,

56 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

(a) a whole image

(b) an enlarged image

Figure 6.3: Examples of vector-data images

6.2. EXPERIMENTAL DOMAINS: VECTOR-DATA IMAGES 57

OR-gates, buffers, terminals, and connecting lines. An example of a vector-data image
of a logic circuit diagram is shown in Figure 6.3(a). The segmentation task is then to di-
vide these vector-data images into clusters such that each cluster consists of line-segments
whose origins are the same circuit part.

This example set consists of 100 elements. Over this example set, the mean number
of clusters is16.7, and the mean number of objects per one object se€btdd). Eight
attributes of objects, seven attributes of pairs, and four attributes of partitions are used, as
shown in Section 6.2.1.

In Section 2.1, we pointed out four drawbacks of a non-systematic design approach,
and we can see here that our vector-data set is a good test bed for each of these drawbacks.
Firstly, in terms of the images themselves, there are no obvious features that help for par-
titioning the vector-data images. For instance, there are no visual clues such as contrived
color or markings. Such partitioning problem is just what we want to solve without de-
pending on intuition. Secondly, the difficulty of formalizing exceptional features can be
illustrated by examining some of the possible events in the images. For example, Fig-
ure 6.3(b) is an enlarged image that depicts the highlighted part of the OR-gate symbol
in Figure 6.3(a). This shows that there are several undesired egpoiséndgapg in
the image. The presence of such undesired events significantly complicates the task of
specifying concrete rules, since it is difficult to identify the features that how and where
these events will occur. We want our algorithm to be capable of acquiring concrete rules

that can be applied to such images. Thirdly, since the original diagrams are hand-written,

58 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

these vector-data images are suffered some variation. The kind of solution that we want
to find for partitioning these images is one that is free from user tuning when applying
acquired rules. Finally, in order to enhance statistical stability of estimation, we also want
to rigorously separate the training examples from the testing ones. And our algorithm
deal with so many numbers of examples that exceeds the limitation of human cognitive
ability. These are what we have achieved with our LCE technique, as demonstrated in the

next chapter.

6.2.1 Attributes for Vector-Data Images

The attributes assigned to objects and their pairs are briefly shown in Table 6.2. The selec-
tion procedure of these attributes is the same in the case of experiments for dot patterns.
The first four attributes of objects are simply the X coordinate of the line-segment’s
mid-point, the Y coordinate of the mid-point, the difference between the X coordinates of
the two end-points, and the difference between the Y coordinates of the two end-points.
All the other attributes of objects are related to the notion oi@n a series of con-
nected line-segments that do not pass branching or terminal points. When two of line-
segments connect, they must have exactly one end-point in common. Branching points
are defined as such end-points to which three or more line-segments are connected. Ter-
minal points are defined as such end-points to which only one line-segment is connected.
Four attributes are calculated from the arc involving the target line-segment. The first of

these is the number of line-segments in the arc. The subsequent attributes are the standard

6.2. EXPERIMENTAL DOMAINS: VECTOR-DATA IMAGES 59

Attributes of objects Attributes of pairs

1. X coordinate of mid-point 1. Connection information
2. Y coordinate of mid-point 2. Difference of angles
3. Difference of X coordinate between 3. Shortest distance between end-points
end-points 4. The smaller position index number jn
4. Difference of Y coordinate between ascending distance order
end-points 5. The larger position index number in as-

5. The number of line-segments in the arc cending distance order
including the line-segment to which at
tribute is assigned

1
IS

Distance between mid-points

o 7. Whether two line-segments are in the
6. Standard deviation of the lengths of the same arc

line-segment in the arc

7. Standard deviation of the angles of the
line-segments in the arc

8. Sum of the lengths of the line-seg-
ments in the arc

Table 6.2: Attributes for vector-data images

60 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

deviation of the lengths and the angles of the line-segments in the arc. Finally, the sum of
the lengths of the line-segments in the arc is also included as an attribute.

The attributes of pairs in Table 6.2 also require some explanation. Let us call the two
line-segments in the paid and B. The first attribute, connection information, is then

defined as

x — 1 if AandB are directly connected,

0 otherwise,

wherez is the total number of line-segments connecting to the end-point4tsatd B

have in common. The second attribute is the difference between the angles of the line-
segments, regularized so as to range fi@wno 90°. The third attribute is the shortest
distance that can join an end-point 4fto an end-point ofB. The fourth and the fifth
attributes are found by imposing a total order on all the line-segments. This is similar
to the second and third attributes of the dot pairs in Table 6.1, except that the minimum
distance between end-points (as in the third property of pairs of line-segments) is used to
construct the order. The sixth attribute is the distance between mid-poiAtarad B, and

the seventh attribute is a Booleayes” or “no” to indicate whether the line-segments

and B belong to the same arc.

Finally, we adopt the following four attributes of the partitions:

6.3. ATESTING METHOD 61

a'(n) = %
a*(r) = exp(cy x (Standard Deviation of #C;})) , ca = HT
Br) = exples x min £07) | ¢ = 2
Cremn ’ 3
a'(r) = expley X max#Cy), ¢4 = hl_2
Crem ’ 20

We give the constants,’s, such that the mean of attribute values roughly becohies
These constants are introduced to make attribute values to be distributed as uniformly as

possible.

6.3 A Testing Method

Before showing our experimental results, we present a testing method for determining
whether true partitions are estimated using the acquired rule. The method is a kind of
cross-validation test that is commonly used for learning from examples. We have also
created a quantitative measure for comparing the estimated partition with the true partition
to test how closely the true partition has been estimated.
To begin with, for a cross-validation test, a given example set is split into two parts:

a training example set and a testing example set. After acquiring a rule for partitioning
from the training example set, the rule is evaluated to determine how correctly it can

partition the object sets in the testing example set. To get a reliable measure, we adopt a

62 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

“leave-one-out-test” — a strict cross-validation test. The first example is picked from a
given example set, and a rule is acquired from the rest of the example set. Then, for an
object set in the picked example, a partition is estimated by using the acquired rule. Since
the true partition is already specified in the picked example, the estimated partition can
be easily compared with the true one, and the similarities between them are calculated.
This process is repeated for each of the other examples in the example set. The mean of
the similarities can then be used as a measure for ability to estimate true partition for any
unseen object by applying acquired rules.

We introduceatio of information losgRIL), that is also called uncertainty coefficient,
as a similarity measure. The RIL is the ratio of the information that is not acquired to the
total information required for estimating a correct partition. Another definition of the RIL
is posterior entropy divided by prior entropy. LEt be an event where an object pair
is in the same cluster of the true partitioh. The prior entropy, that is the mean of the

information required for estimating the true partition, is

1

HOT) = 3 SR e T

A

whereN (s) is the number of object paigsthat satisfy the conditiom(p, 7*) = s. LetIl
be an event where a pair of individuals are in the same cluster of the estimated partition

~

7. The posterior entropy, that is the mean of the information not acquired for correct

6.3. ATESTING METHOD 63

estimation, is

1

! N(s.), NO,t N(1,¢
H*|H:z;; ((N)(;t)()’

whereN (s, t) is the number of object paiysthat satisfy the conditiom(p , 7*) = s and

in(p, 7) = t. Consequently,
H (IT*|11)
H(IT*) -

RIL =

The smaller the RIL becomes, the more correctly a partition is estimated. It ranges
from0to 1, and becomegif and only if the two partitions are completely identical. Other
measures are also possible, such as the ratio of correctly partitioned object pairs used in
the numerical taxonomy literature [11, 22]. However, for the ratio of correctly partitioned
pairs, the lower bound changes accordingtoSince this property makes the scale nor-
malization difficult, it is inconvenient to use this ratio. As another example, for the gene
finding problem (the detection of coding regions in given DNA sequences) the correlation
coefficient is commonly used [4]. However, this coefficient becomes infinite when the
denominator is zero. Though this circumstance is avoidable by using approximations, we

do not want to use the approximations since it seems rathéoc Using the RIL avoids

these problems altogether.

64 CHAPTER 6. EXPERIMENTAL DOMAINS AND TESTING METHODS

Chapter 7

Experimental Results and Discussions

Here we present and discuss our experimental results on the dot pattern and vector image
example sets. To begin with, we apply both our LCE method and the benchmark EM
algorithm to the dot pattern example sets. This comparison allows us to confirm that our
method is indeed capable of estimating true partitions. Having established this, we then

apply our method to the more realistic example set of vector-data images.

Table 7.1: The experimental results (means and s.d.'s of the RIL) derived by the rules
acquired by our method and the EM algorithm from the dot pattern example sets

Our Method EM algorithm t-value
Separated 0.067 (0.1473) 0.089 (0.1762) +1.175
Touching 0.161 (0.1747) 0.161 (0.2108) —0.008
Overlapping 0.369 (0.2323) 0.389 (0.2780) +0.667

65

66 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

7.1 Testing Using Dot Patterns

Each row of Table 7.1 shows the experimental results for the three example sets: sepa-
rated, touching and overlapping dot patterns. Each set consists of 100 examples. In the
second and third columns of the table, we show the means (and standard deviations in
parentheses) of the RIL based on the rules acquired by our method and the EM algorithm,
respectively. In the last column, we shewalues, which are measures to compare two

means. When given pairs,z; andy;, thet-value is defined as:

(1/n) > (i — i)
\/ (1/n) S50 (wi—yi)?

n—1

Since thet-value follows the student’s-distribution withn—1 degrees of freedom, the
mean of ther;’s is greater than that of thg’s at the significance level af% if the value
is greater than thg9-th percentile of the studentisdistribution,t 9.

As we noted in Section 6.1, to produce results for the EM algorithm, we supplied
it with significant amounts of information about the domain: the numbers of clusters,
and the fact that dots in a cluster follow a Gaussian distribution with a covariance of
zero. This is a deliberate attempt to produce a realistic comparison for our LCE method,
despite the EM algorithm being primarily designed only for the simple clustering task.
As can be seen from Table 7.1, the partitions estimated by our methods do not suffer
when compared to the EM algorithm in the separated and the overlapping cases and is

almost tie in the touching case. The positivealues in Table 7.1 indicate that the mean

7.1. TESTING USING DOT PATTERNS 67

Table 7.2: The experimental results (means and s.d.’s of the RIL) derived by the rules that
our original and simplified methods acquired from the dot pattern example sets

Original Method Simplified Method t-value
Separated 0.067 (0.1473) 0.067 (0.1496) +0.143
Touching 0.161 (0.1747) 0.162 (0.1753) +1.150
Overlapping 0.369 (0.2323) 0.371 (0.2321) +1.009

of the RILs in the case of our method is smaller, but all values are lesgihan2.365,

so the differences are not statistically significant. The proper conclusion to draw from
these results is not that one method is superior to the other (the methods are designed for
dealing with different types of problems) but that our method is successful in acquiring
knowledge for partitioning just from a given example set.

In Figure 7.1, we then show the RILs of partitions derived by the rules acquired from
different sizes of example sets. For each three types of example sets, we change the size of
example sets from 10 to 1000, and plot the RILs with error-bars. As the sizes of example
sets increase, RILs tend to be decreasing, namely more sophisticated rules are acquired.
The fact indicates that the more examples are available, our LCE techniques obtain the
more useful information that help for producing true partitions.

To investigate the effects of the terms of Equation (4.2) and (4.3), we also carried out
a further test using a simplified version of our method in which no attributes of partitions
are employed. Specifically, we set the functjfafir) to always be constant at Table 7.2
shows how this simplified algorithm compares to our original method (size of example

sets are 100). The positivevalue in this table indicates an advantage for our original

68 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

1.0
0.8 --------- -;’ -- g ---
0.6 .. N SR
=.
o : i
0.4 ---u----j\- -- g ---
0.2 | g..,._.._................ .. S S
b |
AN B SR SRR REEE SR T
009 100 1000

sizes of example sets

(a) Separated

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets

7.1. TESTING USING DOT PATTERNS 69

1.0
0.8 .
0.6 .. N SR

-

m H
0.4 --u-----.-.-: -- g ---
0.2 [alu. ..

{ TTTLETLY] L CLTTT Pernnnn L IO &
0.0 100 1000

sizes of example sets

(b) Touching

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets

70 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

1.0
0.8 --------- -;’ -- g ---
0.6 -- D ———————eeerer ettt

i

o

. $....
e B Tl CUCITUUNEMINES WIS SRSTHESIES S
0.4 BhL. LT F F &
-
00 100 1000

sizes of example sets

(c) Overlapping

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets

7.1. TESTING USING DOT PATTERNS 71

method, but the difference is not statistically significant. We repeated this experiment
with example sets of size from 10 to 1000, and showtthelues in Figure 7.2. For each
example, two partitions are estimated: the one is derived by our original method, and
the other is done by our simplified method. In the figure, the solid lines shoakies
between RILs of these two partitions, and broken lines show at each sample size.
However again observed no differences at a significance levébofl his lack of a clear

result is caused by a specific characteristic of this experimental circumstance. Though
the aim of attributes of partitions is intended to help for acquiring a rule in consideration
of global features of true partitions, the attributes of object pairs used for this experiment
already reflect such features. For example, the seventh and the eighth attributes described
in Section 6.1.1 are based on a minimal spanning tree. Such trees reflect the gestalt
structure of dot patterns (see, e.g., [33]), so global features of true partitions are taken into
consideration, even if attributes of partitions are not employed.

Also, note that the RIL and other measures discussed in Section 6.3 doesn't directly
evaluate the correctness of estimation, since they are defined on the basis of examining
whether object pairs are correctly partitioned. In general, this kind of measure may fail
to reflect the actual correctness, for examples, when there are dependencies between the
object pairs (we saw an example of this in the final paragraph of Section 4.1). However,
since we do not know of the other types of measures for partitioning, we had nothing but
to adopt such a type of measures. To investigate the effects of attributes of partitions,

we applied a further measure that takes into account the specific global nature of the

72 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

t-values

10 100 1000
sizes of example sets

(a) Separated

Figure 7.2: The-values between RILs derived by the rules that our original and simplified
methods

7.1. TESTING USING DOT PATTERNS 73

t-values

10 100 1000
sizes of example sets

(b) Touching

Figure 7.2: The-values between RILs derived by the rules that our original and simplified
methods

74 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

t-values

10 100 1000
sizes of example sets

(c) Overlapping

Figure 7.2: The-values between RILs derived by the rules that our original and simplified
methods

7.1. TESTING USING DOT PATTERNS 75

F-ratio

10 100
sizes of example sets

(a) Separated

Figure 7.3: The-values between RILs derived by the rules that our original and simplified

methods

76

CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

F-ratio

-
10 100
sizes of example sets

(b) Touching

Figure 7.3: The-values between RILs derived by the rules that our original and simplified

methods

7.1. TESTING USING DOT PATTERNS 77

2.5 -
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. - S
2 i y : i
.
*
*
*
*
(@) *,
"
- *
© ‘e
ot .
1 *
*
L . i
i

L
100 1000

10
sizes of example sets

(c) Overlapping

Figure 7.3: TheF-ratios between the error (the difference between the number of clusters
in the estimated and the true partitions) for our original and our simplified methods

78 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

partitions: the difference between the number of clusters in the estimated and the true
partitions. Since we adopt an attribute that represents the numbers of clusters, effects of
the attribute will be evaluated by the measure. The Figure 7.3 shows how the simplified
method compares with our original method on the dot pattern example sets when assessed
with this new measure. ThE-ratios in the figure are the ratio of the mean squares of the
simplified method’s estimations to that of the original method. It is known that this value
follows F'-distribution with (n;—1 , no—1) degrees of freedom. In the figure, the solid
lines showF'-ratios and the broken lines sha¥®-percentiles off’-distributions, Fj 9.

If the F-ratio is grater thanF} o9, the error of the numbers of clusters estimated by the
original method is smaller at the significance level of 1%. As the numbers of training
examples increase, the errors estimated by the original methods tend to become smaller,
and the differences of the errors are statistically significant for any of three example sets
whose size is grater than 500. This demonstrates an advantage of adopting the term of
Equation (4.3).

For reference and to help with an intuitive comparison, in Figure 7.4 and 7.5, we give
an example of the partitions of two sample dot patterns (both from the touching object
sets whose size is 100). The original (target) partitions are shown in (a) of the figure.
We selected these particular examples because they represent the most difficult example
sets for the EM algorithm (Figure 7.4) and our method (Figure 7.5). That is, these are
the examples for which the partitions produced by the algorithms had maximal RIL. The

figure (b) and (c) show the actual partitions that were derived by the EM algorithm and

7.1. TESTING USING DOT PATTERNS

b

> >

o o
o
o o
o8o
@® o
m] X @
[m] [m]
O X X
o]
o
X X
O X X
L hd
e ©)
° e o
)
Y []

°© o
o o
o
o
o8o
a o
°
o
o o °
o
o
©® © o
c o0
o o o
o o
o
] le)
080
@ O
O om
o o
o
O o o
o] o
o
@@ @ o
e O o
N L]
A A)
A © e
A
A)

(b) EM Algorithm [RIL = 0.908]

(c) Our LCE Method RIL = 0.308]

The most difficult example set for the EM Algorithm

Figure 7.4: The partition examples from the dot pattern example set

80 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

o
. % _° o
o o °
(e}

o ©Oo 8 S
(o] o%
o
e
° o
o o

% ° o] % ° o
° 0o ° ° %o ° °
o S o 8
o Oo o ©o 8
80 Q -)
) o© ° o©
o ° o ° ° ° o °
[e) A
o A
o A
A A A A A A
A A
A A A A
A ma AA L& maA A4
A A A A
A A A A
(b) EM Algorithm [RIL = 0.241] (c) Our LCE Method RIL = 0.555]

The most difficult example set for Our Method

Figure 7.5: The partition examples from the dot pattern example set

7.2. TESTING USING VECTOR-DATA IMAGES 81

Table 7.3: The experimental results (means and s.d.’s of the RIL) for the vector-data image
example sets

Original Method Simplified Method t-value
0.430 (0.1242) 0.442 (0.1250) +4.077

by the rules acquired by our LCE method. In our opinion, it seems that each algorithm

has its own strengths and weaknesses.

7.2 Testing Using Vector-data Images

Next, we present the results for the vector-data image example sets. For this example set,
it is highly non-trivial (if possible at all) to provide the authorized algorithm, since we
don’'t know mathematical models of the data sources, that are given in the case of dot-
pattern experiments. We therefore simply compare our original method to the simplified
version, producing the results of Table 7.3. In this case,tth@lue gives us a clear,
statistically significant result that the means of the original method’s RIL are smaller.
Note that, for the dot pattern example set, we adopted attributes of object or object pairs
that reflected global features of the partitioning. Thus statically significant difference is
not observed. In contrast to this, for the vector-image data, the original method has a
clear advantage, since such attributes were not implemented. For both methods, the mean
value of the RIL is larger than that we found with the dot-pattern example set, but this is
because the image segmentation problem is more realistic, and more difficult. Yet, even

for this practical example set, the RIL between the estimated and true partitions shows that

82 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

our method acquires 57% of the information required for complete partitioning. Though
this result is short for our complete satisfaction, it is enough to feel confident that rules
acquired by LCE methods have sufficient potential, and to put our hopes on improvement
of LCE methods.

As in the previous section, we can again give some examples illustrating the perfor-
mance of the partitioning algorithm. This time we choose the three examples representing
the best, median and worst results of our method. Figure 7.6 shows the true (the upper
of the figure) and then the estimated (the lower of the figure) partitions for each example,
together with the RIL of the estimated result (recall that the lower the RIL, the better the
match between the true and estimated partitions). Note that we depict each cluster as a
set of line-segments surrounded by a thin dashed line and drawn in the same color.

Comparing our results to previous research is complicated by the lack of formal anal-
ysis of the results produced by existing approaches. For example, although segmentation
methods have been applied to vector-data images, the evaluation techniques used to as-
sess these techniques typically just focus on outlining their qualitative merits (as in [13]),
since a standard scheme for performance comparison has not been established. As we
pointed out in Section 2.1, this emphasis on qualitative performance is largely due to
the difficulty of distinguishing testing and training images and the task-specific way that
applications are developed. The alternative of applying existing techniques to our own
image data is also non-trivial since it would require extensive tuning, such as the specifi-

cation of domain knowledge and parameters. Itis possible that such tuning could produce

7.2. TESTING USING VECTOR-DATA IMAGES 83

.....

estimated partition

(a) The Best ResultR/ L = 0.145)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set

84 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

estimated partition

(b) The Median ResultR/L = 0.412)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set

7.2. TESTING USING VECTOR-DATA IMAGES 85

estimated partition

(c) The Worst ResultRI L = 0.701)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set

86 CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

good patrtitioning, but our technique retains the significant advantages that it is almost
automated, and can therefore be used by expert and non-expert users alike. It could be
argued that even non-experts can apply many techniques aimed at parameter adjustments,
but we should point out that almost all such adjustment techniques work under an induc-
tive framework. That is, the rules are not deductively given but are learned from given
examples. Though the definition of a loss function is essential for such an approach, for
all former image segmentation methods, this inductive framework and loss function are

not formally defined. It is exactly what our LCE method supplies.

7.3 Discussions

We introduced learning from cluster examples (LCE) as an important new learning task,
and discussed the merits of solving this task. We proposed a solution for the task and
applied this method to object sets in two types of domains. Using a set of dot-patterns we
showed that our method could automatically acquire and fully represent the information
required for acquiring true partitions. We then showed that these results carried over to
the more realistic domain of vector-data images. We can summarize the merits of using

LCE techniques set against the drawbacks shown in Section 2.1 as follows:

¢ No intuitive derivation of rules, or little explicit knowledge on the structure of the
domain, is required. Instead, designers can just give examples of true partitions that

may indeed fully represent features.

7.3. DISCUSSIONS 87

¢ Inductive learning algorithms of LCE could formalize rules that can handle excep-

tional features as typical features.

e Users with no knowledge of the target domain, or even of the underlying learning
techniques, can apply acquired rules without laborious parameter tuning. This is
the result of acquiring rules from various examples, so that the rules represent not

only the typical domain features but also their possible variations.

e Statistical stability is clearly superior in the case of using LCE methods. Since
testing examples are strictly separated from training examples, the generalization
ability of rules for unseen object sets will be fairly evaluated. In addition to this,
the number of training examples is also not limited by human cognitive ability.
Even the hundred examples used in this paper represents an advance on the size of

example sets employed in most research to date.

The above merits speak for themselves in demonstrating the potential of solutions by

the LCE techniques.

88

CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSIONS

Chapter 8

Conclusions

We advocate the task of learning from cluster examples and have discussed here the mer-
its of solving this task. We have proposed a solution method for the task and apply this
method to object sets in two types of domains. One of these is an experimental domain:
the dot-patterns. By our method, the rules that fully represent the information required for
correct partitioning were acquired from an example set. The other is a more realistic do-
main: the vector-data images. The acquired rules have advantages over these obtained in
the previous works. Based on the above, it can be concluded that learning from cluster ex-
amples has sufficient potential, and we feel confident that we stand a chance of improving
the solution method for learning by this method.

We will try to advocate more sophisticated a loss function than the RIL, that indirectly
measures the similarity of partitions by object pairs. If a function that makes it possible

to directly compare partitions is developed, we will be able to more precisely evaluate

89

90 CHAPTER 8. CONCLUSIONS

the similarities of partitions. And we then develop an algorithm that can acquire not a

criterion, i.e. Equation 4.8, but a rules directly acquiring true partitions themselves.

Appendix A

The Description Length for the Decision

Lists and Example Sets

The total description length of the decision lists and example sets is as follows.

m

U(ex1 , DL) = log*"(m) + Z(z(n) + e(sm))).
=1
log™(+) Rissanen’s code length for natural numbers [23]
m the number of terms in the decision list
UT;) code length for the terri;

¢(S(T;)) code length for the example set coverediby

91

92 APPENDIX A: THE DESCRIPTION LENGTH

- Code length for the example s&{29]:

#S
aS):1%4#54-n-%mg(
#5F
#S the number of examples ifi
#ST the number of5’s elements whose classlis
- Code length for the terr’:
#Avsed #A
wmzzp%()+n+§:am
j=1 g JEAusn
#A the number of attribute vector elements
A the set of indices specifying literals used in the tarm

HA the number of literals used in the teffh

(L) code length for the literal ;

- Code length for the literal (for continuous attributes)

The code lengths for the three types of literals are as follows:

((a® < 6,) = log3+ {(0,),
(0, <a*<0,) = log3+£(6;)+(6,),
00, < a®) = log3+4(0)),

wherel(6,) and/(6,,) are code lengths for the thresholds. These lengths are determined

as depicted in Figure A.1. For example, the half-way point between the minimum and

93

Figure A.1: Code length for thresholds

maximum thresholds is encoded with one bit. The quarter-way point is encoded with
three bits. Every time the precision doubles, two more bits are required to encode the

threshold. Itoh’s paper [10] gives a full explanation of this.

- Code length for the literal. (for discrete attributes)

d—1
log(d — 1) + 10g<

)

d/

d size of the attribute’s domain

d’ the number of values appears at the right-hand of the literal

94

APPENDIX A: THE DESCRIPTION LENGTH

Bibliography

[1]

[2]

[3]

[4]

[5]

P. Adriaans and D. Zanting®ata Mining Addison-Wesley, 1996.

C. M. Bishop. Neural Networks for Pattern Recognitio®xford University Press,

1995.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stor@&assification and

Regression TreesVadsworth Inc., 1984.

M. Burset and R. Guig. Evaluation of gene structure prediction progran@e-

nomics 34:353-367, 1996.

P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results.
In U. M. Fayyad, G. Diatetsky-Shapiro, P. Smyth, and R. Uthurusamy, edidrs,
vances in Knowledge Discovery and Data Miniongapter 6, pages 153-180. AAAI

Press/The MIT Press, 1996.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-

complete data via the EM algorithmlournal of the Royal Statistical Society (B)
39(1):1-38, 1977.

95

96 BIBLIOGRAPHY

[7] B. S. Everitt. Cluster AnalysisEdward Arnold, third edition, 1993.

[8] D. H. Fisher. Knowledge acquisition via incremental conceptual clustediaghine

Learning 2:139-172, 1987.

[9] T. M. Ha and H. Bunke. Image processing methods for document image analysis. In
H. Bunke and P. S. P. Wang, editorandbook of Character Recognition and Docu-
ment Image Analysighapter 1, pages 1-47. World Scientific Publishing Company,

1997.

[10] S. Itoh. Application of MDL principle to pattern classification problem3. of

Japanese Society for Artificial Intelligenc&4):608-614, 1992. (in Japanese).

[11] A. K. Jain and R. C. DubesAlgorithms for Clustering DataPrentice Hall, 1988.

[12] T. Kamishima, M. Minoh, and K. Ikeda. Rule formulation based on inductive learn-
ing for extraction and classification of diagram symbdigns. of The Information

Processing Society of JapaB6(3):614—-626, 1995. (in Japanese).

[13] S. H. Kim and J. H. Kim. Automatic input of logic diagrams by recognizing loop-
symbols and rectilinear connections. In H. Bunke, P. S. P. Wang, and H. S. Baird,
editors,Document Image Analysigolume 16 ofMachine Perception and Artificial

Intelligence pages 1113-1129. World Scientific Publishing Company, 1994.

BIBLIOGRAPHY 97

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara.
RoboCup: Challenge problem for Al and robotics. In H. Kitano, edRabhoCup-

97: Robot Soccer World Cup pages 1-19. Springer, 1998.

M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruniftyon
of The 1st Intl. Conf. on Knowledge Discovery and Data Minipgges 216-221,

1995.

R. S. Michalski. Inferential theory of learning as a conceptual basis for multistrategy

learning.Machine Learning11:111-151, 1993.

M. Minoh, T. Munetsugu, and K. lkeda. Extraction and classification of graphical
symbol candidates based on perceptual organizatiordo. of the 11th Intl. Conf.

on Pattern Recognitigrmpages 234-237, 1992.

G. Pagallo and D. Haussler. Boolean feature discovery in empirical learhag.

chine Learning5:71-99, 1990.

T. Pavlidis. Why progress in machine vision is so sl®attern Recognition Letters

13:221-225, 1992.

J. R. Quinlan. Induction of decision treddachine Learning1:81-106, 1986.

J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum descrip-

tion length principle Information and Computatiqr80:227—-248, 1989.

98 BIBLIOGRAPHY

[22] W. M. Rand. Objective criteria for the evaluation of clustering methalsf the

American Statistical Associatip66:846—850, 1971.

[23] J. Rissanen. A universal prior for integers and estimation by minimum description

length. The Annals of Statistic41(2):416-431, 1983.

[24] J. Rissanen. Universal coding, information, prediction, and estimd&®E Trans.

on Information Theory30(4):629—-636, 1984.

[25] J. RissanenStochastic Complexity in Statistical Inquiryolume 15 ofWorld Sci-

entific Series in Computer Sciend&orld Scientific, 1989.

[26] G. Shafer.A Mathematical Theory of EvidencBrinceton University Press, 1976.

[27] P. Suetens, P. Fua, and A. J. Hanson. Computational strategies for object recognition.

ACM Computing Survey24(1):5-61, 1992.

[28] R. Urquhart. Graph theoretical clustering based on limited neghbourhoodPagéts.

tern Recognition15(3):173-187, 1982.

[29] C. S. Wallace and J. D. Patrick. Coding decision trééachine Learningl1:7-22,

1993.

[30] M. A. Wong and T. Lane. Ath nearest neighbour clustering proceduleurnal of

the Royal Statistical Society (B)5(3):362—-368, 1983.

[31] K. Yamanishi. A learning criterion for stochastic rulddachine Learning9:165-

203, 1992.

BIBLIOGRAPHY 99

[32] K. Yamanishi and T. Han. Introduction to MDL from viewpoints of information

theory. J. of Japanese Society for Artificial Intelligenc&3):427—-434, 1992. (in

Japanese).

[33] C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.

IEEE Trans. on Computerg20(1):68—-86, 1971.

100 BIBLIOGRAPHY

Acknowledgments

| wish to thank Professor Katsuo Ikeda for giving me excellent guidances and sug-
gestions.

| would like to thank Professor Michihiko Minoh, Akira Amano, Shouichi Hirose and
Professor Toru Ishida, for continuous guidances.

| wish to express my gratitude to Nobuyuki Otsu, Professor Taisuke Sato, Professor
Katsumi Nitta, Fumio Motoyoshi, Professor Hitoshi Matsubara for giving the opportunity
of this research.

Thanks are due to lan Frank for reading the manuscript and making number of helpful
suggestions, to Shoutarou Akaho for valuable advice mainly on the EM algorithms, and
to Kazuo Miyashita for valuable comments.

Acknowledgments are due to Morihiko Tajima, Hideki Asoh, Kennichi Hnada, Hi-
royuki lida, Martin Muller, Hitoshi Iba, Sumitaka Akiba, Takeshi Nagami, Reijer Grim-
bergen, Ken Sadohara, Koji Tsuda and members of the Ikeda laboratory at the Kyoto

University.

101

102

The Author’s Publication List

Journal Papers

1. T. Kamishima, M. Minoh, and K. Ikeda: “Rule formulation based on inductive
learning for extraction and classification of diagram symbadlsdnsactions of The
Information Processing Society of Japavol. 36, No. 3, pp. 614-626, 1995 (in

Japanese).

2. T. Kamishima and K. Nitta: “Learning from cluster examplek”pf Japanese So-

ciety for Artificial IntelligenceVol. 12, No. 2, pp. 276-284, 1997 (in Japanese).

3. K. Nitta, O. Hasegawa, T. Akiba, T. Kamishima, T. Kurita, S. Hayamizu, K. Itoh,
M. Ishizuka, H. Dohi, and M. Okumura: “An experimental multimodal disputation
system: MrBengo”Trans. The Institute of Electronics, Information and Commu-

nication Engineers D-lI1Vol. J80-D-II, No. 8, pp. 2081-2087, 1997 (in Japanese).

4. T. Kamishima and F. Motoyoshi: “Learning from cluster examples — considering

attributes assigned to entire object sefggnsactions of The Information Process-

103

104

ing Society of Japar\vol. 40, No. 9, pp. 3345-3357, 1999 (in Japanese).

5. T. Kamishima and F. Motoyoshi: “Learning from cluster examples”, Submitted to

Journal of Machine Learning.

Technical Reports and Conferences

1. T. Kamishima, M. Minoh, and K. Ikeda: “Rule formulation with inductive learning
for extraction and distinction of diagram symbolShe Institute of Electronics,
Information and Communication Engineers Technical Repdot. PRU 93-132,

No. 3, pp. 67-74, 1994 (in Japanese)

2. T. Kamishima and K. Nitta: “Learning from examples for clusteringfie Infor-
mation Processing Society of Japan SIG Npows. Al 101-4, No. 1, pp. 19-24,

1995 (in Japanese).

3. K. Nitta, O. Hasegawa, T. Akiba, T. Kamishima, T. Kurita, S. Hayamizu, K. Itoh,
M. Ishizuka, H. Doi, and M. Okumura: “An experimental multi-modal debate sys-
tem”, The Information Processing Society of Japan SIG Nowet HI 69-6, pp.

39-46, 1996 (in Japanese).

4. K. Nitta, O. Hasegawa, T. Akiba, T. Kamishima, T. Kurita, S. Hayamizu, K. Itoh,
M. Ishizuka, H. Dohi, and M. Okumura: “An experimental multimodal disputation

system”, InIJCAI-97 WorkShop: Intelligent Multimodal Systempp. 23-28, 1997.

105

5. T. Akiba, T. Kamishima, and K. Itoh: “MILES: Multimodal Interaction LEading
Script, which and express time relations between events and communicative ele-
ments in dialogues'Technical Report of The Institute of Electronics, Information
and Communication Engineer¥ol. NLC 97-53,SP97-86, pp. 71-78, 1997 (in

Japanese).

6. T. Kamishima and F. Motoyoshi: “Learning from cluster examples — considering
attributes of entire object sets —Technical Report of The Japanese Society for

Atrtificial Intelligence Vol. SIG-FAI-9703-10, pp. 69-76, 1998 (in Japanese).

7. T. Kamishima and F. Motoyoshi: “Learning from cluster examples — considering
attributes of clusters —"Technical Report of The Japanese Society for Artificial

Intelligence Vol. SIG-FAI-9804-4, pp. 23-28, 1999 (in Japanese).

8. T. Kamishima and F. Motoyoshi: “Learning from cluster examples — an improve-
ment of a method for handling attributes of clusters”Phoceedings of 2000 Work-
shop on Information-Based Induction Sciences (IBIS2000) 81-86, 2000 (in

Japanese).

