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Overview

Order: object sequence sorted according to a particular property

prefer not preferSquid Cucumber RollFatty Tuna
> >

“I prefer Fatty Tuna to Squid ”
but “How much prefer is unknown”

comparing 5 supervised ordering methods

Attributed Central Order (ACO): an order as 
concordant with given samples as possible
Supervised Ordering: a learning function to sort 
objects so as to be concordant with ACO

ex. a sequence of sushi sorted according to my preference
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Why Orders?
Widely Used

Common representation form
ex. search result list, top-seller list
Fit for measuring subjective quantities
subjective quantities, s.g., preference or 
sensation, can more easily measured by ordinal 
relation than by numerical scale

Important Level of Measurement
An order is intrinsic regarding decision/selection
 no matter how small the errors of scores, it  can 
not be guaranteed that candidates are correctly 
ordered
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Attributed Central Orders
 & Supervised Ordering

E > D > A > B > C

A > B > C

D > E > B > C

A > D > C

given sample orders
A > B > C

E > D > A > B

D > C > B

unseen sample orders
concordant with

both orders
on average

Attributed Central
Order (ACO)

sorting
functionEB C

unordered objects
E > B > C

concordant with ACO

concordant

Supervised Ordering: a task for acquiring a sorting 
function form given sample orders; specifically, 
objects are represented by attributed vectors
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Cohen’s Method [Cohen 99]
Learning: Probability for estimating orders of object 
pairs based on attribute values

Sorting: sort unordered objects based on the learned 
probability function

sample orders
A!B!C

D!E!B!C
A!D!C

decompose into
ordered pairs

A!B,A!B,B!C
D!E,D!B,D!C, · · ·

A!D,A!C,D!C

learn probability

Pr[x!y|x, y]

candidate order
A!B!C

decompose into ordered pairs
Pair = {A!B,A!B,B!C}

Find the order maximize the objective function 
among candidate orders

∑
x!y∈Pair

Pr[x!y|x, y]objective function:
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SVM-Based Method (SVOR)

Sorting: sort unordered objects according to their utilities

Learning: Find a utility function that maximally 
separates preferred from non-preferred

SVOR (Support Vector Ordinal Regression) [Herbrich 98]
SVM-like formulation & Kernel ready

sample orders

A > B > C

A > D > C
utility(A) utility(D) utility(C)

utility(A) utility(B) utility(C)

marginAB marginBC

marginAC

utility & margin Objective

maximize:∑
X,Y

marginXY
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SVM-Based Method (Order SVM)

Sorting: sort unordered objects according to their utilities

Learning: Find a utility function which maximally 
separate higher-ranked from lower-ranked on average

Order SVM [Kazawa 03]
Rank as category & SVM-like formulation & Kernel ready

sample orders

A > B > C

utility & margin Objective

utility(A) utility(B) utility(C)

Rank 1
high low

utility(A) utility(B) utility(C)

Rank 2
high low

margin1AC
margin1AB

margin2AC

margin2BC

maximize:∑
j

∑
X,Y

marginj
XY
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Thurstone Based Method

Sorting: sort unordered objects according to their utilities

Learning: acquire utility function to describe the 
degree to be ranked higher

generation model “Thurstone’s law of comparative judgment”

sample orders: 

A B C Dobjects:
generative distribution

for object scores

A ! B ! D ! C
sorted according to scores

Given sample orders are combined based on this model
by min MSE Thurstone Regression (TR) [Kamishima 02]
by ML Attributed Thurstone Model (ATM) [Akaho 02]
Utility is a linear function to estimate ranks of combined order
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Data Generation Procedure
1. for each object, randomly generate attribute vector
2. generate true ACO according to the utility function:

3. as sample orders, generate sub-orders of the ACO

Test Procedure: Cross Validation
1. divide sample orders into a training set and a test set
2. learn sorting function from training set
3. compare the estimated order derived by sorting function and the 

true ACO in the test set

Experiments

utility(xj) = (1 +
∑k

l wlxjl)dim

A!B!C!D!E!F
true central order

A!C!D B!C!E!F
sample orders
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Attribute Noise & Order Noise
Order Noise

Attribute Noise

A!B!C!D

noiseless
true ACO sample order

A!B!D

On sampling objects from true ACO
orders among objects are preserved

with noise

A!B!C!D
true ACO

objects are
sampled and permutated

randomly selected adjacent objects
are permutated

sample order
D!B!A

xi = (xi1, . . . , xik)keep original attribute values
add noise
following normal distribution x′

ij = xij × N(1, σ)

noiseless

with noise
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Attribute Noise and Order Noise (Result)

0.700

0.775

0.850

0.925

1.000

0% 0.1% 1% 10%

Cohen OSVM SVOR TR ATM

0.30
0.44
0.58
0.72
0.86
1.00

0% 20% 40% 80% 160%

good

bad

good

bad
highlow highlow

Order Noise Attribute Noise

Vertical: estimation precision Horizontal: noise level

robust against order noise
robust against attribute noise

Non-SVM-based
SVM-based
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SVM-based Methods & Noise
Basically, analogous to the SVM for classification
OSVM: ranked higher than j-th or not
SVOR: which object in a pair is ranked higher

Order Noise Attribute Noise

points move
in an attribute 

space
decision boundary

classes of 
points

are changed

Never affect, if moving within 
decision boundary

Changed points become support-
vectors with high probability,

and seriously affect

A > B A < B A > B A < B
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Thurstone-based Methods & Noise

A!B B!A

Order Noise Attribute Noise

A!B B!A A!B B!A

frequency of ordered pairs A>B and B<A at a specific 
position in attribute space

Instances are moved from  
B>A to A<B at the same 

position in attribute space

Instance of B>A moves to another 
position in attribute space

Results are not affected,
if majority between A>B & 

B<A do not change 

Results are affected,
unless the majorities don’t 

change at the source and the 
destination position
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Other Learning Parameters

100 1000 10000

# of different objects

Cohen OSVM SVOR TR ATM

2 3 5 7 10 100 300 500 1000

length of
sample orders # of sample orders

summary of
weak points

SVM-Based Non-SVM-Based
low model bias high model bias

many kinds of objects
need for high

generalization ability
If: few # of objects
×: overfitting

If: many # of objects
×: insufficient fit

short/few vs long/many 
sample orders

If: short/few samples
×: insufficient 
information

If: long/many samples
×: insufficient use of 

information
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Summary (1)
Cohen’s Method

Low estimation precision, but the fastest
Suit for on-line learning
Low bias models can be applied for learning posterior 
probabilities, but such a model may increase computational 
complexity

SVM-Based Methods (OSVM & SVOR)
High estimation precision, but the slowest
(# of orders)×(order length)2 are limited to 105 - 106

Robust against attribute noise, not against order noise
It is able to use high-bias models by changing kernel functions, 
but computational complexity cannot be reduced
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Summary (2)
Thurstone-Based Methods (TR & ATM)

estimation precision and computational complexity are medium
This method can be applied even if # of samples are many, # of 
different objects are limited to 105 - 106

Low bias models can be applied for regression, but such a 
model may increase computational complexity
TR and ATM methods are comparable in estimation precision 
while the ATM requires additional computation, so the TR is 
preferred

Future Woks
Explore the effects of the tuing options of model bias
Test on another real data set in which # of objects is large to 
evaluate the methods’ generalization abilities 
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More Information

Toshihiro Kamishima Home Page
http://www.kamishima.net/


