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Abstract

Ordered lists of objects are widely used as represen-
tational forms. Such ordered objects include Web search
results or bestseller lists. In spite of their importance,
methods of processing orders have received little attention.
However, research concerning orders has recently become
common; in particular, researchers have developed vari-
ous methods for the task of Supervised Ordering to acquire
functions for object sorting from example orders. Here, we
give a unified view of these methods and our new one, and
empirically survey their merits and demerits.

1 Introduction

The term order indicates a sequence of objects that is
sorted according to some property. For example, the re-
sponses from Web search engines are lists of pages sorted
according to their relevance to queries. Retail stores use
bestseller lists, which are item-sequences sorted according
to sales volume. Research concerning orders has recently
begun. In particular, several methods have been developed
for learning functions used to sort objects from example or-
ders. We call this task Supervised Ordering. We have
advocated an unified view of the supervised ordering task
to independently proposed tasks, and have considered the
connection with the other types of tasks dealing with orders.
We performed experiments targeting these methods, and our
our preliminary results were reported in our extended ab-
stract [10]. As the next step, in this work our new method
and one more method were added to our survey, and these
were checked by using more elaborate data sets.
We formalize the supervised ordering task in Section 2,

survey methods in Section 3, and summarize our findings in
Section 4.

2 Supervised Ordering

This section formalizes the supervised ordering task. We
begin by defining basic notations. An object, entity, or
substance to be sorted is denoted by xj . The universal
object set, X∗, consists of all possible objects. Each ob-
ject xj is represented by the attribute value vector xj =
(xj1, xj2, . . . , xjk), where k is the number of attributes.
The order is denoted by O = xja�xjb

� · · · �xjc . Note
that the subscript j of x doesn’t mean “The j-th object in
this order,” but that “The object is uniquely indexed by j in
X∗.” The order x1�x2 represents “x1 precedes x2.” An
object set X(Oi) or simply Xi is composed of all the ob-
jects in the order Oi; thus |Xi| is equal to the length of the
order Oi. An order of all objects, i.e., Oi s.t. X(Oi)=X∗,
is called a complete order; otherwise, the order is incom-
plete. Rank, r(Oi, xj), is the cardinal number that indicates
the position of the object xj in the order Oi. Two orders,
O1 and O2, are concordant if ordinal relations are consis-
tent between any object pairs commonly contained in these
two orders; otherwise, they are discordant.
A Supervised Ordering task can be considered a regres-

sion or a fitting task whose target variables are orders. Fur-
ther, input samples comprise not a set of vectors, but a set of
orders, S = {O1, . . . , ON}, whereN is the number of sam-
ples. The regression curve corresponds to an Attributed
Central Order (ACO). Analogous to the case of a regres-
sion function, an ACO is estimated so as to be concordant
not only with given sample orders in S, but also with orders
that will be generated. This task differs from a regression
in two ways. First, since the target variables are orders, the
modeling methods of an ACO and errors are needed. An
ACO is modeled by a ordering function, ord(Xu): Given
an unordered object set Xu, ord(Xu) outputs the estimated
order Ôu, such that it is composed ofXu and is concordant
with the ACO. Though errors of real values are modeled

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05) 

1550-4786/05 $20.00 © 2005 IEEE 

tkamishima
テキストボックス
Please refer the full version:
“A Survey and Empirical Comparison of Object Ranking Methods”
In  Preference Learning, pp. 181–201. Springer (2010)



by an additive term of a random variable, errors in orders
are modeled by a random permutation ε(·). That is to say,
a sample order Oi is generated by ε(ord(Xi)). Second,
since samples are generally incomplete, there may be ob-
jects not observed in given samples. Such objects should be
ranked under the assumption that the neighboring objects in
the attribute space would be close in rank. Supervised or-
dering is also different from classification, because orders
can be structured using symmetric groups, but classes can-
not. We say that a ordering function is absolute if outputs
of the function are concordant with each other; otherwise,
it is relative. For example, if unordered sets {x1, x2, x3}
and {x1, x2, x4} are given to the absolute ordering func-
tion, then the function outputs orders that are concordant
w.r.t. x1 and x2 regardless of objects x3 or x4. An abso-
lute ordering function implies that the corresponding ACO
is independent of the contents of an input unordered set.

A supervised ordering task is closely related to a notion
of a central order [12]; given sample orders S, central or-
der Ō is defined as the order that minimizes the sum of the
distances

∑
Oi∈S d(Oi, Ō), and it differs from the above

ACO in that concordance only with given samples is con-
sidered, and objects are represented not by attributes, but
by unique identifiers. The derivation task of central orders
is generally NP-hard. Many methods for this task have been
developed, and these can be categorized as four types [4]:
Thurstonian, in which objects are sorted according to real
score values, Paired Comparison, based on the ordinal
judgment between object pairs, Distance Based, depend-
ing on the distance from a modal order, andMultistage, in
which objects are sequentially arranged top to end. Super-
vised ordering methods are commonly designed by incor-
porating a way to deal with attributes into these ordering
models.

Supervised ordering is also related to Ordinal Re-
gression [1], which is a regression whose a type of re-
sponse variables is ordered categorical. Ordered cate-
gorical variables can take one of a finite set of prede-
fined values, like categorical variables, and order these val-
ues additionally; for example, a domain of a variable is
{“good”,“fair”,“poor”}. Ordered categories and orders are
different in two points: First, while orders provide purely
relative information, ordered categorical values additionally
include absolute information. For example, while the cate-
gory “good” means absolutely good, x1 � x2 means that x1

is relatively better than x2. Second, the number of grades
that can be represented by ordered categorical variables is
limited. Consider that there are four objects. Because at
least two objects must be categorized into one of the three
categories, {“good”,“fair”,“poor”}, the grades of these two
objects are indistinguishable. However, orders can repre-
sent the differences of grades between any two objects.

3 Methods

We present five supervised ordering methods.
Cohen’s method (Cohen) [3] is designed to find the order

Ôu that maximizes the objective function
∑

xa�xb∈Ou
Pr[xa�xb|xa, xb], (1)

where Pr[xa�xb|xa, xb] is the conditional probability
given the attribute values of xa and xb, and xa�xb ∈ Ou

denotes all the ordered pairs concordant with Ou. Because
maximization of Equation (1) is known as a linear ordering
problem, which is NP-hard, it is not tractable to find the op-
timal solution if |Xu| is large. Cohen et al. hence proposed
a greedy algorithm that sequentially chooses the most pre-
ceding object. Pr[xa�xb|xa, xb] is learned by Cohen et al.’s
original Hedge algorithm.
Freund et al. proposed RankBoost (RB) [5], which is a

boosting algorithm targeting orders. Inputs of RankBoost
are the feedback function Φ(xa, xb), where Φ(xa, xb) >
0 implies xb � xa, and ranking features fl(xi), which
gives partial information about target ordering. Given
these inputs, RankBoost returns the final ranking H(xi),
which works as a Thurstonian score function. First,
the initial distribution is calculated by D1(xa, xb) =
max(Φ(xa, xb), 0)/Z1, where Z1 is a normalization factor.
Then, for each round t = 1, . . . , T , the algorithm repeats
the selections of a weight αt and a weak learner ht(x), and
the updates of distribution by:

Dt+1(xa, xb) = 1
Zt

Dt(xa, xb) exp
(
αt(ht(xa) − ht(xb))

)
.

Weak learners acquire some information about target orders
from ranking features, and ht(xb)>ht(xa) implies xb�xa.
αt and ht are selected so that the normalization factor Zt

is minimized. After learning, unseen objects xj ∈ Xu are
sorted in descending order of H(xj) =

∑T
t=1 αtht(xj),

where T is the number of rounds.
We show two SVM-basedmethods,Order SVM (OSVM)

[11] and SVOR. The former is designed to discriminate
whether or not a given object is ranked higher than j-th,
while the latter judges which of two objects precedes the
other.
To enhance the reliability of this estimation, our OSVM

trains multiple SVMs with different threshold ranks and
sorting unseen objects using the average of those SVMs. Its
learning is formulated as the following optimization prob-
lem:

min
w,vt,bt

1
2
‖w‖2 +

λ

2

L−1∑

t=1

‖vt‖2 + C

L−1∑

t=1

m∑

i=1

L∑

j=1

ξj
i (t)

s.t. sgn[j−t]((w+vt)·xj
i+bt) ≥ 1−ξj

i (t),

ξj
i (t) ≥ 0 for ∀i, j, t, (2)

where xj
i is the feature vector of the j-th ranked object in

the i-th ranking, {xj
i}j=1...L

i=1...m are the training samples, and
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C and λ are hyperparameters. The sgn[z] is 1 if z ≥ 0;
otherwise, −1. The SVM that discriminates the top t ob-
jects from the rest is ft(x) = (w+vt) ·x+ bt. Thus, the
second regularizer

∑
t ‖vt‖2 makes all ft(x) agree on the

predicted orders as much as possible. The order is predicted
by sorting objects according to the Thurstonian scores,w·x.
The dual problem of Equation (2) is similar to that of stan-
dard SVMs, and any kernel function can be used instead of
the inner products between feature vectors.
We refer to the other SVM-based method as Support

Vector Ordinal Regression (SVOR) [6] since its formu-
lation is very similar to standard SVMs and the work on
it appears to be inspired by their past ordinal regression
work. This method was independently developed as Rank-
ing SVM by Joachims [7]. SVOR discriminates correctly
ordered pairs from incorrectly ordered pairs, and uses a
Thurstonian score function. SVOR’s learning is formulated
as the following optimization problem:

minw
1
2‖w‖2 + C

∑m
i=1

∑
1≤j<l≤L ξjl

i

s.t. w·(xj
i −xl

i)≥1−ξjl
i , ξjl

i ≥0 for ∀i, j < l, (3)

where the same notations as OSVM are used for xj
i , m, L,

and C. SVOR tries to find the direction w along which
sample objects are ordered so that the narrowest separa-
tion between samples is maximal. The estimated orders are
predicted by sorting objects according to the Thurstonian
scores, w · x. As in the case of OSVM, the dual problem of
Equation (3) can be written using only the inner products of
x. Thus we can use any kernel function in SVOR, as well.
We turn to our new Expected Rank Regression (ERR)

method, which is an improved version of the regression-
based method in [9]. After expected ranks of objects are
derived, the function to estimate these expected ranks is
learned using a standard regression technique. To derive ex-
pected ranks, we assume that orders Oi ∈ S are generated
as follows: First, an unseen complete orderO∗

i is generated.
(|X∗|−|Xi|) objects are then selected uniformly at random,
and these are eliminated from O∗

i ; then, the Oi is observed.
Under this assumption, the conditional expectation of ranks
of the object xj ∈ Xi in the unseen complete order given
Oi is proportional to: [2]

E[r(O∗
i , xj)|Oi] ∝ r(Oi, xj)/(|Xi| + 1). (4)

These expected ranks are calculated for all objects in
each Oi∈S. Next, weights of the regression function
f(xj) are estimated by applying a common regression
method. Samples for regression consist of the attribute
vectors of objects, xj , and their corresponding expected
ranks, r(Oi, xj)/(|Xi| + 1); thus the number of samples
is

∑
Oi∈S |X(Oi)|. In this paper, n-order polynomials are

adopted as a class of regression functions. Once weights of
f(xj) are learned, the order Ôu can be estimated by sorting
the objects xj ∈ Xu according to the Thurstonian scores of
f(xj).

4 Discussions and Conclusions

We applied these supervised ordering methods to artifi-
cial and real data sets. We could not show these results in
detail due to the lack of space; thus, we here summarize the
results. Detailed experimental results can be found in the
publication list page at our Web site [8].
In the first and second columns of Table 1, we summarize

computational complexities of learning and sorting time.
We assume that the number of ordered pairs and of objects
in S are approximated by N |X̄|2 and N |X̄|, respectively
(|X̄| is the mean length of the sample orders). The SVM’s
learning time is assumed to be quadratic in the number of
training samples. The learning time of Cohen’s Hedge algo-
rithm or the RB is linear in terms of N |X̄|2, if the number
of iterations T is fixed. However, if T is adaptively chosen
according to N |X̄ |2, their time complexity becomes super-
linear. In terms of the number of attributes k, the SVM-
based methods depend on the number of non-zero attribute
values; thus, they are practically sub-linear. Generally, in
practical use, the learning time of the SVM-based methods
is slow, that of Cohen and RB is intermediate in speed, and
that of ERR is much faster. In terms of time for sorting
of xj ∈ X , the Cohen greedy requires O(|X |2), while the
others perform more quickly, O(|X | log |X |).
Finally, we can summarize the pros and cons of each

method. Our new ERR method was practically the fastest
without sacrificing its prediction performance. Therefore,
algorithm parameters can be tuned in relatively short times.
Even for the cases where ERR performed poorly, we ob-
served that it could be improved by re-tuning. In this
method, the uniform distribution of the object observation
is assumed, but our experimental results demonstrated ro-
bustness against the violation of this assumption. A demerit
of this method is quadratic computation time in terms of the
number of attributes, k.
The most prominent merit of Cohen is that it is an on-

line method. For on-line learning purposes, the other meth-
ods cannot be used. Though the Cohen performed rather
poorly in our experiments, this is because the Hedge algo-
rithm is designed to take into account only ordinal informa-
tion among attribute values. We observed that performance
could be improved by adopting the naive Bayes, which is
designed to use categorical or numerical information in at-
tribute values. The Cohen suffers from the problem of rel-
ative ordering. An absolute ordering function would be
preferable in applications such as filtering or recommenda-
tion. For example, if one prefers an “apple” to an “orange”,
he/she will always rank an “apple” higher than an “orange”
when sorting any set of fruits according to degree of his/her
preference. As described in Section 2, the supervised order-
ing task is related to ordering models. The Cohen method
adopts paired comparison, while the others are Thurstonian.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05) 

1550-4786/05 $20.00 © 2005 IEEE 



Table 1. Computational
complexities

Learning Sorting
Cohen N |X̄|2k |X|2
RB N |X̄|2k |X|log|X|
SVOR N2|X̄|4k |X|log|X|
OSVM N2|X̄|4k |X|log|X|
ERR N |X̄|k2 |X|log|X|  0.5
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Figure 1. Order noise results
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Figure 2. Attribute noise results

Accordingly, though absolute ordering functions can be ac-
quired by any of the methods other than Cohen, Cohen learns
relative functions.
The unique property of the RB is the rich options of

weak learners. Because of this property, various types of
attributes can be used. If objects are represented by vectors
whose attribute types are mixtures of ordinal and numeri-
cal/categorical types, the other algorithms cannot be used.
Our experimental results forRBwere rather inferior, but we
observed that they could be improved by adaptively increas-
ing the number of rounds, T . Due to the slow convergence,
we had to stop iterations after the end of the drastic error
drop at the beginning stage. However, it takes the same
or more computation time as the SVM-based methods until
complete convergence. Furthermore, it should be also noted
that too many rounds T can cause over-fitting.
Like a standard SVM, the SVOR and OSVM are advan-

tageous if the number of attributes, k, is large. We tested
their robustness against order and attribute noises. Order
noise is the permutation in sample orders, while attribute
noise is the perturbation of attribute values. Figure 1 and 2
show the depression of estimation accuracies in accordance
with the increase of order and attribute noise levels, respec-
tively. The performance measure, Spearman’s ρ, indicates
that the larger is the more accurate prediction. The two
SVM-basedmethods were robust against attribute noise, but
not against order noise. This is because the interchanged
ordered pairs tend to become support vectors, but the per-
turbation of attribute values does not affect the support vec-
tors so much. Conversely, the non-SVM-based methods can
learn correctly if correct orders constitute the majority of
sample orders; thus, these are robust against order noise.
However, any perturbation in attribute values always affects
their performance. Hence, while the SVM-based methods
are preferable for the less-order-noise condition, the other
methods are suitable for the less-attribute-noise condition.
The most serious demerit of SVM-based methods is their
slowness. The learning complexity of the two SVM-based
methods is the same, but the OSVM is practically slower.
However, it was more robust against order noise than SVOR.
In our next study, we intended to improve upon these

methods and apply them to practical problems, such as
content-based filtering.
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