Supervised Ordering — An Empirical Survey

Toshihiro Kamishima
National Institute of Advanced Industrial Science and Technology (AIST)
mail@kamishima.net (http://www.kamishima.net/)

Hideto Kazawa
NTT Communication Science Laboratories,
Nippon Telegraph and Telephone Corporation
kazawa@cslab.kecl.ntt.co.jp

Shotaro Akaho
National Institute of Advanced Industrial Science and Technology (AIST)
s.akaho@aist.go.jp

Abstract

Ordered lists of objects are widely used as representational forms. Such ordered objects include Web search results or bestseller lists. In spite of their importance, methods of processing orders have received little attention. However, research concerning orders has recently become common; in particular, researchers have developed various methods for the task of Supervised Ordering to acquire functions for object sorting from example orders. Here, we give a unified view of these methods and our new one, and empirically survey their merits and demerits.

1 Introduction

The term order indicates a sequence of objects that is sorted according to some property. For example, the responses from Web search engines are lists of pages sorted according to their relevance to queries. Retail stores use bestseller lists, which are item-sequences sorted according to sales volume. Research concerning orders has recently begun. In particular, several methods have been developed for learning functions used to sort objects from example orders. We call this task Supervised Ordering. We have advocated an unified view of the supervised ordering task to independently proposed tasks, and have considered the connection with the other types of tasks dealing with orders. We performed experiments targeting these methods, and our our preliminary results were reported in our extended abstract [10]. As the next step, in this work our new method and one more method were added to our survey, and these were checked by using more elaborate data sets.

We formalize the supervised ordering task in Section 2, survey methods in Section 3, and summarize our findings in Section 4.

2 Supervised Ordering

This section formalizes the supervised ordering task. We begin by defining basic notations. An object, entity, or substance to be sorted is denoted by \(x_j \). The universal object set, \(X^* \), consists of all possible objects. Each object \(x_j \) is represented by the attribute value vector \(x_j = (x_{j1}, x_{j2}, \ldots, x_{jk}) \), where \(k \) is the number of attributes. The order is denoted by \(O = x_{j_1} \succ x_{j_2} \succ \cdots \succ x_{j_s} \). Note that the subscript \(j \) of \(x \) doesn’t mean "The \(j \)-th object in this order," but that "The object is uniquely indexed by \(j \) in \(X^* \)." The order \(x_1 \succ x_2 \) represents "\(x_1 \) precedes \(x_2 \)." An object set \(X(O_i) \) or simply \(X_i \) is composed of all the objects in the order \(O_i \); thus \(|X_i| \) is equal to the length of the order \(O_i \). An order of all objects, i.e., \(O \), s.t. \(X(O) = X^* \), is called a complete order; otherwise, the order is incomplete. Rank, \(r(O_i, x_j) \), is the cardinal number that indicates the position of the object \(x_j \) in the order \(O_i \). Two orders, \(O_1 \) and \(O_2 \), are concordant if ordinal relations are consistent between any object pairs commonly contained in these two orders; otherwise, they are discordant.

A Supervised Ordering task can be considered a regression or a fitting task whose target variables are orders. Further, input samples comprise not a set of vectors, but a set of orders, \(S = \{O_1, \ldots, O_N\} \), where \(N \) is the number of samples. The regression curve corresponds to an Attributed Central Order (ACO). Analogous to the case of a regression function, an ACO is estimated so as to be concordant not only with given sample orders in \(S \), but also with orders that will be generated. This task differs from a regression in two ways. First, since the target variables are orders, the modeling methods of an ACO and errors are needed. An ACO is modeled by a ordering function, \(\text{ord}(X_o) \): Given an unordered object set \(X_o \), \(\text{ord}(X_o) \) outputs the estimated order \(\hat{O}_o \), such that it is composed of \(X_o \) and is concordant with the ACO. Though errors of real values are modeled...
by an additive term of a random variable, errors in orders are modeled by a random permutation \(\varepsilon(\cdot) \). That is to say, a sample order \(O_i \) is generated by \(\varepsilon(\text{ord}(X_i)) \). Second, since samples are generally incomplete, there may be objects not observed in given samples. Such objects should be ranked under the assumption that the neighboring objects in the attribute space would be close in rank. Supervised ordering is also different from classification, because orders can be structured using symmetric groups, but classes cannot. We say that a ordering function is absolute if outputs of the function are concordant with each other; otherwise, it is relative. For example, if unordered sets \(\{x_1, x_2, x_3\} \) and \(\{x_1, x_2, x_4\} \) are given to the absolute ordering function, then the function outputs orders that are concordant w.r.t. \(x_1 \) and \(x_2 \) regardless of objects \(x_3 \) or \(x_4 \). An absolute ordering function implies that the corresponding ACO is independent of the contents of an input unordered set.

A supervised ordering task is closely related to a notion of a central order [12]: given sample orders \(S \), central order \(\hat{O} \) is defined as the order that minimizes the sum of the distances \(\sum_{O_i \in S} d(O_i, \hat{O}) \), and it differs from the above ACO in that concordance only with given samples is considered, and objects are represented not by attributes, but by unique identifiers. The derivation task of central orders is generally NP-hard. Many methods for this task have been developed, and these can be categorized as four types [4]: Thurstonian, in which objects are sorted according to real score values, Paired Comparison, based on the ordinal judgment between object pairs, Distance Based, depending on the distance from a modal order, and Multistage, in which objects are sequentially arranged top to end. Supervised ordering methods are commonly designed by incorporating a way to deal with attributes into these ordering models.

Supervised ordering is also related to Ordinal Regression [1], which is a regression whose type of response variables is ordered categorical. Ordered categorical variables can take one of a finite set of predefined values, like categorical variables, and order these values additionally; for example, a domain of a variable is \{“good”,“fair”,“poor”\}. Ordered categories and orders are different in two points: First, while orders provide purely relative information, ordered categorical values additionally include absolute information. For example, while the category “good” means absolutely good, \(x_1 \succ x_2 \) means that \(x_1 \) is relatively better than \(x_2 \). Second, the number of grades that can be represented by ordered categorical variables is limited. Consider that there are four objects. Because at least two objects must be categorized into one of the three categories, \{“good”,“fair”,“poor”\}, the grades of these two objects are indistinguishable. However, orders can represent the differences of grades between any two objects.

3 Methods

We present five supervised ordering methods.

Cohen’s method (Cohen) [3] is designed to find the order \(\hat{O}_u \) that maximizes the objective function

\[
\sum_{x_u > x_v \in O_u} \Pr[x_u > x_v | x_u, x_v],
\]

where \(\Pr[x_u > x_v | x_u, x_v] \) is the conditional probability given the attribute values of \(x_u \) and \(x_v \), and \(x_u > x_v \in O_u \) denotes all the ordered pairs concordant with \(O_u \). Because maximization of Equation (1) is known as a linear ordering problem, which is NP-hard, it is not tractable to find the optimal solution if |\(X_u \)| is large. Cohen et al. hence proposed a greedy algorithm that sequentially chooses the most preceding object. \(\Pr[x_u > x_v | x_u, x_v] \) is learned by Cohen et al.’s original Hedge algorithm.

Freund et al. proposed **RankBoost** (RB) [5], which is a boosting algorithm targeting orders. Inputs of RankBoost are the feedback function \(\Phi(x_u, x_v) \), where \(\Phi(x_u, x_v) > 0 \) implies \(x_u > x_v \), and ranking features \(f(x_i) \), which gives partial information about target ordering. Given these inputs, RankBoost returns the final ranking \(H(x_i) \), which works as a Thurstonian score function. First, the initial distribution is calculated by \(D_1(x_u, x_v) = \max(\Phi(x_u, x_v), 0)/Z_1 \), where \(Z_1 \) is a normalization factor. Then, for each round \(t = 1, \ldots, T \), the algorithm repeats the selections of a weight \(\alpha_t \) and a weak learner \(h_t(x) \), and the updates of distribution by:

\[
D_{t+1}(x_u, x_v) = \frac{1}{Z_t} D_t(x_u, x_v) \exp(\alpha_t(h_t(x_u) - h_t(x_v))).
\]

Weak learners acquire some information about target orders from ranking features, and \(h_t(x_u) > h_t(x_v) \) implies \(x_u > x_v \). \(\alpha_t \) and \(h_t \) are selected so that the normalization factor \(Z_t \) is minimized. After learning, unseen objects \(x_u \in X_u \) are sorted in descending order of \(H(x_i) = \sum_{t=1}^{T} \alpha_t h_t(x_i) \), where \(T \) is the number of rounds.

We show two SVM-based methods, **Order SVM** (OSVM) [11] and SVOR. The former is designed to discriminate whether or not a given object is ranked higher than \(j \)-th, while the latter judges which of two objects precedes the other.

To enhance the reliability of this estimation, our OSVM trains multiple SVMs with different threshold ranks and sorting unseen objects using the average of those SVMs. Its learning is formulated as the following optimization problem:

\[
\min_{w, \chi^j} \frac{1}{2}||w||^2 + \sum_{t=1}^{L-1} \frac{1}{2} \sum_{t=1}^{L-1} ||v_{it}||^2 + C \sum_{i=1}^{L} \sum_{j=1}^{m} \xi_i^j(t)
\]

s.t. \(-\text{sgn}(j - t)(||w + v_{it}|| - b_{it}) - 1 - \xi_i^j(t) \geq 0 \) for \(t, j, i \),

\[
\xi_i^j(t) \geq 0 \quad \text{for } t, j, i.
\]

where \(\chi_i^j \) is the feature vector of the \(j \)-th ranked object in the \(i \)-th ranking, \(\{\chi_i^j\}_{i=1}^{L} \) are the training samples, and
C and λ are hyperparameters. The $\text{sgn}[z]$ is 1 if $z \geq 0$; otherwise, -1. The SVM that discriminates the top t objects from the rest is $f_t(x) = (w + v_i) \cdot x + b_t$. Thus, the second regularizer $\sum_i ||v_i||^2$ makes all $f_t(x)$ agree on the predicted orders as much as possible. The order is predicted by sorting objects according to the Thurstonian scores, $w \cdot x$.

The dual problem of Equation (2) is similar to that of standard SVMs and the work on SVMs cannot be used. Though the Hedge algorithm is designed to take into account only ordinal information, the Hedge algorithm performed poorly in our experiments, this is because the Hedge algorithm is designed to take into account only ordinal information. For on-line learning purposes, the other methods cannot be used. Though the Cohen performed rather poorly in our experiments, this is because the Hedge algorithm is designed to take into account only ordinal information among attribute values. We observed that performance could be improved by adopting the naive Bayes, which is designed to use categorical or numerical information in attribute values. The Cohen suffers from the problem of relative ordering. An absolute ordering function would be preferable in applications such as filtering or recommendation. For example, if one prefers an “apple” to an “orange”, he/she will always rank an “apple” higher than an “orange” when sorting any set of fruits according to degree of his/her preference. As described in Section 2, the supervised ordering task is related to ordering models. The Cohen method adopts paired comparison, while the others are Thurstonian.

4 Discussions and Conclusions

We applied these supervised ordering methods to artificial and real data sets. We could not show these results in detail due to the lack of space; thus, we here summarize the results. Detailed experimental results can be found in the publication list page at our Web site [8].

In the first and second columns of Table 1, we summarize computational complexities of learning and sorting time. We assume that the number of ordered pairs and of objects in S are approximated by $N|\bar{X}|^2$ and $N|\bar{X}|$, respectively ($|\bar{X}|$ is the mean length of the sample orders). The SVM’s learning time is assumed to be quadratic in the number of training samples. The learning time of Cohen’s Hedge algorithm and the RB is linear in terms of $N|\bar{X}|^2$, if the number of iterations T is fixed. However, if T is adaptively chosen according to $N|\bar{X}|^2$, their time complexity becomes super-linear. In terms of the number of attributes k, the SVM-based methods depend on the number of non-zero attribute values; thus, they are practically sub-linear. Generally, in practical use, the learning time of the SVM-based methods is slow, that of Cohen and RB is intermediate in speed, and that of ERR is much faster. In terms of time for sorting of $x_j \in X$, the Cohen greedy requires $O(|X|^2)$, while the others perform more quickly, $O(|X| \log |X|)$.

Finally, we can summarize the pros and cons of each method. Our new ERR method was practically the fastest without sacrificing its prediction performance. Therefore, algorithm parameters can be tuned in relatively short times. Even for the cases where ERR performed poorly, we observed that it could be improved by re-tuning. In this method, the uniform distribution of the object observation is assumed, but our experimental results demonstrated robustness against the violation of this assumption. A demerit of this method is that it is an online method. For on-line learning purposes, the other methods cannot be used. Though the Cohen performed rather poorly in our experiments, this is because the Hedge algorithm is designed to take into account only ordinal information among attribute values. We observed that performance could be improved by adopting the naive Bayes, which is designed to use categorical or numerical information in attribute values. The Cohen suffers from the problem of relative ordering. An absolute ordering function would be preferable in applications such as filtering or recommendation. For example, if one prefers an “apple” to an “orange”, he/she will always rank an “apple” higher than an “orange” when sorting any set of fruits according to degree of his/her preference. As described in Section 2, the supervised ordering task is related to ordering models. The Cohen method adopts paired comparison, while the others are Thurstonian.
Accordingly, though absolute ordering functions can be acquired by any of the methods other than Cohen, Cohen learns relative functions.

The unique property of the RB is the rich options of weak learners. Because of this property, various types of attributes can be used. If objects are represented by vectors whose attribute types are mixtures of ordinal and numerical/categorical types, the other algorithms cannot be used. Our experimental results for RB were rather inferior, but we observed that they could be improved by adaptively increasing the number of rounds, T. Due to the slow convergence, we had to stop iterations after the end of the drastic error drop at the beginning stage. However, it takes the same or more computation time as the SVM-based methods until complete convergence. Furthermore, it should be also noted that too many rounds T can cause over-fitting.

Like a standard SVM, the SVOR and OSVM are advantageous if the number of attributes, k, is large. We tested their robustness against order and attribute noises. Order noise is the permutation in sample orders, while attribute noise is the perturbation of attribute values. Figure 1 and 2 show the depression of estimation accuracies in accordance with the increase of order and attribute noise levels, respectively. The performance measure, Spearman’s ρ, indicates that the larger is the more accurate prediction. The two SVM-based methods were robust against attribute noise, but not against order noise. This is because the interchanged ordered pairs tend to become support vectors, but the perturbation of attribute values does not affect the support vectors so much. Conversely, the non-SVM-based methods can learn correctly if correct orders constitute the majority of sample orders; thus, these are robust against order noise. However, any perturbation in attribute values always affects their performance. Hence, while the SVM-based methods are preferable for the less-order-noise condition, the other methods are suitable for the less-attribute-noise condition. The most serious demerit of SVM-based methods is their slowness. The learning complexity of the two SVM-based methods is the same, but the OSVM is practically slower. However, it was more robust against order noise than SVOR.

In our next study, we intended to improve upon these methods and apply them to practical problems, such as content-based filtering.

Acknowledgments: A part of this work is supported by the grant-in-aid 14658106 and 16700157 of the Japan society for the promotion of science. Thanks are due to the Mainichi Newspapers for permission to use the articles.

References

