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Abstract

Ordered lists of objects are widely used as representa-
tional forms. Such ordered objects include Web search re-
sults and best-seller lists. Techniques for processing such
ordinal data are being developed, particularly methods for
a supervised ordering task: i.e., learning functions used to
sort objects from sample orders. In this article, we propose
two dimension reduction methods specifically designed to
improve prediction performance in a supervised ordering
task.

1 Introduction

Orders are sequences of objects sorted according to some
property and are widely used to represent data. For exam-
ple, responses from Web search engines are lists of pages
sorted according to their relevance to queries. Best-seller
lists, which are item sequences sorted according to sales
volume, are used on many E-commerce sites. Processing
techniques for orders have immediate practical value, and
so research concerning orders has become very active in
recent years. In particular, several methods are being de-
veloped for learning functions used to sort objects repre-
sented by attribute vectors from example orders. We call
this task Supervised Ordering [14] and emphasize its use-
fulness for sensory tests1 [14, 17], information retrieval
[4, 9, 11, 20, 23] , and recommendation [8].
Several methods have been developed for the supervised

ordering task. However, when the attribute vectors that de-
scribe objects are in very high dimensional space, these su-
pervised ordering methods are degraded in prediction per-
formance. The main reason for this is that the number of
model parameters to be learned grows in accordance with
the increase of dimensionality; thus, the acquired functions
might not perform well when sorting unseen objects due to
over-fitting.

1measurement of respondents’ sensations, feelings or impressions

Dimension reduction techniques are one obvious solu-
tion to the problems caused by high dimensionality. Dimen-
sion reduction is the task of mapping points originally in
high dimensional space to a lower dimensional sub-space,
while limiting the amount of lost information. Principal
component analysis (PCA) is one of the typical techniques
for dimension reduction. PCA is designed so that varia-
tions in original data are preserved as much as possible. It
has been successfully used for other learning tasks but is
less appropriate for a supervised ordering task. Since PCA
is designed so as to preserve information regarding the ob-
jects themselves, useful information in terms of the target
ordering might be lost by this approach. Therefore, in this
paper, we propose Rank Correlation Dimension Reduc-
tion (RCDR) for dimension reduction in conjunction with
supervised ordering. RCDR is designed to preserve infor-
mation that is useful for mapping to the target ordering.
We show a formalization of the supervised ordering and

known facts regarding orders in Section 2. We propose
our RCDR methods in Section 3. Experimental results are
shown in Section 4. We discuss and summarize the results
in Section 5.

2 Supervised Ordering

To describe the known properties of orders and the su-
pervised ordering task, some basic notations must first be
designed. An object, entity, or substance to be sorted is de-
noted by xj . The universal object set, X∗, consists of all
possible objects. Each object xj is represented by the at-
tribute value vector xj = [xj1, xj2, . . . , xjK ]�, where K
is the number of dimensions of attribute space. The order
is denoted by O = xa� · · ·�xj� · · ·�xb. Note that sub-
script j of x doesn’t mean “The j-th object in this order,”
but that “The object is uniquely indexed by j in X∗.” The
order x1�x2 represents “x1 precedes x2.” An object set
X(Oi) or simply Xi is composed of all objects in the or-
der Oi. The length of Oi, i.e., |Xi|, is denoted by Li. An
order of all objects, i.e., Oi s.t. X(Oi)=X∗, is called a
complete order; otherwise, the order is incomplete. Rank,



r(Oi,xj) or simply rij , is the cardinal number that indi-
cates the position of the object xj in the order Oi. For ex-
ample, for Oi=x1�x3�x2, r(Oi,x2) or ri2 is 3. For two
orders, O1 and O2, consider an object pair xa and xb such
that xa,xb∈X1∩X2,xa �=xb. These two orders are concor-
dant w.r.t. xa and xb if the two objects are placed in the
same order, i.e., (r1a − r1b)(r2a − r2b) ≥ 0; otherwise,
they are discordant. Further, O1 and O2 are concordant if
O1 and O2 are concordant w.r.t. all object pairs such that
xa,xb∈X1∩X2,xa �=xb.
We then describe the distance between two orders,

O1 and O2, composed of the same sets of objects, i.e.,
X(O1) = X(O2) ≡ X . Various kinds of distance
for orders have been proposed [18]. Spearman distance
dS(O1, O2) is widely used. It is defined as the sum of the
squared differences between ranks:

dS =
∑

xj∈X

(
r1j − r2j

)2
. (1)

By normalizing the range to be [−1, 1], Spearman’s rank
correlation ρ is derived.

ρ = 1 − 6dS(O1, O2)/(L3 − L), (2)

where L = |X|. This exactly equals the correlation co-
efficient between ranks of objects. The Kendall distance
dK(O1, O2) is another widely used distance. Consider a set
of object pairs, {(xa,xb) ∈ X × X}, a �= b, xa,xb ∈ X ,
including either (xa,xb) or (xb,xa). The number of object
pairs isM = (L − 1)L/2. The Kendall distance is defined
as the number of discordant pairs between O1 and O2 w.r.t.
xa and xb. Formally,

dK=
1
2

(
M −

∑
{(xa,xb)}

sgn
(
(r1a−r1b)(r2a−r2b)

))
, (3)

where sgn(x) is a sign function that takes 1 if x>0, 0 if
x=0, and −1 otherwise. By normalizing the range to be
[−1, 1], Kendall’s rank correlation τ is derived.

τ =1 − 2dK(O1, O2)/M

=
∑

{(xa,xb)}
sgn

(
(r1a−r1b)(r2a−r2b)

)
/M. (4)

The computational costs for deriving ρ and τ are
O(L log L) and O(L2), respectively. The values of τ and
ρ are highly correlated, because the difference between two
criteria is bounded by Daniels’ inequality [16]:

−1 ≤ 3(L + 2)
L − 2

τ − 2(L + 1)
L − 2

ρ ≤ 1.

A Supervised Ordering task (Figure 1) can be con-
sidered as a regression or a fitting task whose target vari-
ables are orders. The input data is a set of sample orders,

regression order

ordering
function

unordered objects estimated order

concordant
Xu

S

random
permutation

O1 = x1�x2�x3 O3 = x2�x1O2 = x1�x5�x2

Ôu = x1�x5�x4�x3

x1x3 x4x5

���

O∗ = x1�x5�x2�x4�x3¯

Figure 1. A supervised ordering task

S = {O1, . . . , ON}, where N is the number of samples.
These samples give information about which objects should
be ranked higher, and consist of objects represented by at-
tribute vectors. No other side information, such as prefer-
ence scores, is provided. The regression curve corresponds
to a regression order. Analogous to a standard regression,
a regression order is estimated so as to be concordant not
only with given sample orders in S, but also with orders
that will be generated. A regression order is modeled by
an ordering function: Given an unordered object set, the
ordering function outputs the estimated order, such that it
is composed of the given unordered set and is concordant
with the regression order. Supervised ordering also differs
from classification because orders can be structured using
symmetric groups, while classes cannot.
A supervised ordering task is closely related to a notion

of a central order [18]: Given sample orders S, the cen-
tral order Ō(S) is defined as the order that minimizes the
sum of the distances

∑
Oi∈S d(Oi, Ō). It differs from the

above regression order in that concordance only with given
samples is considered, and objects are represented not by at-
tributes, but by unique identifiers. In a supervised ordering
case, there may be objects not observed in given samples.
(e.g., x4 in Figure 1) Such objects should be ranked under
the assumption that the neighboring objects in the attribute
space would be close in rank.
Supervised ordering is also related to ordinal regres-

sion [19], which is a regression in which response variables
are ordered categorical. Similar to categorical variables, or-
dered categorical variables can take one of a finite set of
predefined values, and these values are ordered addition-
ally; for example, the domain of a variable may be {“good”,
“fair”, “poor”}. Ordered categories and orders differ in two
points: First, while orders provide purely relative informa-
tion, ordered categorical values additionally include abso-
lute information. For example, while the category “good”
means absolutely good, x1 � x2 means that x1 is rela-
tively better than x2. Second, the number of grades that
can be represented by ordered categorical variables is lim-



ited. Consider a set of four objects. Because at least two
objects must be categorized into one of the three categories,
{“good”, “fair”, “poor”}, the grades of these two objects
are indistinguishable. However, orders can represent differ-
ences of grades between any two objects. As pointed out
in [3], supervised ordering is a more general problem than
ordinal regression; thus, supervised ordering methods can
be applied to ordinal regression tasks. Generally speaking,
one should not try to solve a more general problem than is
required. For example, an ordinal regression task can be
solved by using an SVM designed for supervised ordering
as in [10]. However, an SVM specialized for ordinal regres-
sion is more efficient [21]. Therefore, the two tasks, super-
vised ordering and ordinal regression, have to be carefully
distinguished.

2.1 Methods and Applications of Super-
vised Ordering

Several methods have been developed for supervised or-
dering. In [14], these methods are surveyed and their pros
and cons are shown. Below, we briefly show these meth-
ods. Cohen et al. [4] proposed a method adopting the paired
comparison approach. Training examples are first decom-
posed into ordered pairs, and the algorithm learns probabil-
ity functions in which one object precedes the other. Then,
unordered objects are sorted so as to maximize the objec-
tive function that is a sum of these probability functions.
RankBoost [8] tries to find a score function that is a linear
combination of weak hypotheses. Weak hypotheses provide
some partial information about the target order to learn. By
using a boosting technique, weights and weak hypotheses
are chosen so that scores are concordant with given sample
orders. Unordered objects can be sorted according to the
learned scores. Order SVM [15] learns near-parallel hyper-
planes in the attribute vector space; the hyperplanes sepa-
rate higher-ranked objects from lower-ranked ones. In the
sorting stage, objects are ordered along the direction per-
pendicular to the hyperplanes. Support Vector Ordinal Re-
gression (SVOR) [9] was proposed by Herbrich et al. In the
learning stage, SVOR finds an optimal direction such that
along this direction the minimum margin between a pair of
objects is large. This method is independently proposed as
the Ranking SVM by Joachims [11]. An active learning ex-
tension of this method is proposed by Yu [23].
We turn to our Expected Rank Regression (ERR)

method. After expected ranks of objects are derived, the
function to estimate these expected ranks is learned using
a standard regression technique. To derive expected ranks,
assume that orders Oi ∈ S are generated as follows: First,
an unseen complete order O∗

i is generated. (|X∗|−Li) ob-
jects are then selected uniformly at random, and these are
eliminated from O∗

i ; then, the Oi is observed. According

to [1], under this assumption, the conditional expectation of
ranks of the object xj ∈ Xi in the unseen complete order
given Oi is

E[r̂(O∗
i ,xj)|Oi] ∝ r(Oi,xj)/(Li + 1). (5)

These expected ranks are calculated for all objects in each
Oi ∈ S. Next, weights of regression function f(xj) are es-
timated by applying a standard regression method. Samples
for regression consist of the attribute vectors of objects, xj ,
and their corresponding expected ranks, r(Oi,xj)/(Li+1);
thus, the number of samples is

∑
Oi∈S Li. Once parameters

of f(xj) are learned, the order Ôu can be estimated by sort-
ing the objects xj ∈ Xu according to the values of f(xj).
Next, we show some examples of applications. In

[11, 20], a supervised ordering method is used to exploit
relevance feedback data in a document retrieval task. The
authors proposed an elegant technique to implicitly obtain
users’ feedback information about preference in retrieved
documents. Assume that retrieved documents are listed by
sorting the degree of relevance to the given query. If the user
selected the third document xc, this action implies that the
user prefers this document to the first, xa, or the second, xb,
because he/she checks the sorted documents sequentially
from the top of the list. So, relevance feedback data, xc �
xa and xc � xb, can be implicitly obtained. Further, doc-
uments are represented by features, such as similarity mea-
sures to the query words, types of documents, or the ranks
in lists generated without exploiting feedback information.
From these feedback data and features of documents, a su-
pervised ordering method makes it possible to learn func-
tions for sorting documents according to the degree of user’s
preference as well as the documents’ relevance to the user’s
query.
In [17, 2], supervised ordering methods are used for sen-

sory tests to examine which product features affect the value
of the products. Metasearch engines are constructed in
[4, 8]. Supervised ordering can be used to make content-
based recommendation. Users’ relative preference data are
first obtained. Based on these preference orders and fea-
tures of items, items can be sorted according to the de-
gree of users’ preference by applying a supervised ordering
method. Finally, highly ranked items are recommended to
users.

3 Rank Correlation Dimension Reduction

In the previous section, we defined a supervised learn-
ing task. Here, we show a dimension reduction technique
specially designed for these supervised ordering methods.
To obtain satisfactory results when using data mining

or machine learning algorithms, it is important to apply
pre-processing methods, such as feature selection, dealing



with missing values, or dimension reduction. Appropriate
pre-processing of data can improve prediction performance,
and can occasionally reduce computational and/or memory
costs. Some pre-processing techniques for mining or learn-
ing methods dealing with orders have been proposed. Ba-
hamonde et al. [2] applied wrapper-type feature selection
to a supervised ordering task. Slotta et al. [22] performed
feature selection for classification of orders. In [6, 5], rank
statistics were used for selecting informative genes frommi-
croarray data. To measure the similarities between orders,
Kamishima and Akaho proposed a method to fill in missing
objects in orders [13]. To our knowledge, however, dimen-
sion reduction techniques specially designed for a super-
vised ordering task have not yet been developed.
Similar to other types of learning tasks, such as classi-

fication or regression, dimension reduction techniques will
be beneficial for supervised ordering tasks, in particular, if
the number of attributes, K, is very large. With reduced
dimensions, the generalization ability can be improved. Be-
cause the number of model parameters to be learned grows
in accordance withK, the acquired functions might not per-
form well when sorting unseen objects due to over-fitting.
In particular, if there are many non-informative attributes or
if complex models are used, the problem of over-fitting will
be alleviated by reducing dimensions.
To reduce the number of dimensions before performing

supervised ordering, one might assume that reduction tech-
niques used for other learning tasks can be used. However,
this is not the case. Principal component analysis (PCA)
is one of typical techniques for dimension reduction. PCA
is designed so that information about data in original at-
tribute vector space is preserved as much as possible. This
approach is less appropriate for a supervised ordering task.
Specifically, because a supervised ordering task must find
a mapping from attribute vectors to the target ordering, it
is not sufficient to preserve information only in source vec-
tors. On the other hand, Diaconis’ spectral analysis [7] for
orders is another possibility. This is a technique to decom-
pose distributions of orders into sub-components. For ex-
ample, first-order components represent the frequency that
the object xj is l-th ranked, while second-order components
represent the frequency that objects xj and xk are l-th and
m-th ranked, respectively. However, our goal is not to find
decomposition in an ordinal space, but to find a sub-space
in an attribute vector space.
From the above discussion, it should be clear that we had

to develop reduction techniques that preserve information
about mappings from attribute vectors to the target ordering.
This is analogous to Fisher’s discriminant analysis, which
is a dimension reduction technique to preserve information
about a mapping from an attribute vector to target classes.
Additionally, the computational cost for reducing dimen-

sions should not be much higher than that for supervised

Table 1. Computational complexities of su-
pervised ordering algorithms

Cohen RankBoost SVOR Order SVM ERR

NL̄2K NL̄2K N2L̄4K N2L̄4K NL̄K2

NOTE: L̄: the mean length of sample orders, N : the
number of samples, and K: the dimension of attribute
vectors. The number of ordered pairs and objects in S are
approximated byNL̄2 andNL̄, respectively. The SVM’s
learning time is assumed to be quadratic in the number of
training samples. The learning complexities of Cohen’s
method or the RankBoost are as above if the number of
iterations is constant. However, in practical use, because
the number of iterations should be increased adaptively in
accordance with the number of ordered pairs, their time
complexities approach N2L̄4k.

ordering methods. Computational complexities of super-
vised ordering methods in the learning stage are summa-
rized in Table 1. We assume that the number of ordered
pairs and objects in S are approximated by NL̄2 and NL̄,
respectively (L̄ is the mean length of the sample orders).
The SVM’s learning time is assumed to be quadratic in the
number of training samples. The learning time of Cohen’s
method or the RankBoost is linear in terms of NL̄2, if the
number of iterations is constant. However, in practical use,
the number of iterations should be increased adaptively. In
the experiment in [8], the number of iterations was linearly
increased in accordance with the number of ordered pairs,
NL̄2. Therefore, their time complexities approach N2L̄4k.
When dimension reduction methods require much higher
computational costs than those in Table 1, the reduction of
dimensions greatly lessens scalability.
Taking into account what is mentioned above, our di-

mension reduction methods should satisfy two require-
ments.

1. It must be designed so as to preserve information about
mappings from object attributes to targeting orders.

2. The computational complexity for dimension reduc-
tion should not be much larger than that for supervised
ordering algorithms.

To fill these requirements, we propose Rank Correlation
Dimension Reduction (RCDR). Given a basis that consists
of l vectors, the next l+1 vector is selected so as to preserve
as much information about target ordering as possible. By
repeating this procedure, we obtain the final sub-space.
First, we outline our RCDR method. Let w(l) be the l-

th vector of a basis. The sub-space spanned by the basis,
{w(1), . . . ,w(l)}, is called the l-th sub-space. We repre-
sent this sub-space by the matrix,W (l) = [w(1), . . . ,w(l)].
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Figure 2. An outline of rank correlation dimension reduction method

Let W (l)⊥ be the complementary space of the W (l), that
is spanned by (K − l) vectors which are orthogonal to all
vectors in the basis, {w(1), . . . ,w(l)}. We are given sample
orders S and attribute vectors, {xj}, and the basis of the
l-th sub-space. This condition is depicted in Figure 2. The
objects in the original K-dimensional spaces (marked by
“◦” in Figure 2) are projected to the complementary space
W (l)⊥ of the l-th sub-space. The projected objects (marked
by “•” in Figure 2) are denoted by x(l)

j , and x(0)
j ≡ xj . By

this projection, we can eliminate information about the tar-
get ordering contained in the sub-spaceW (l). For each k =
1, . . . ,K, objects are sorted in descending order of the k-th

attribute values of the objects projected to W (l)⊥. In Fig-
ure 2, examples of those orders are x1�x3�x2 in the first
attribute and x1�x2�x3 in the second attribute. The rank
correlations between each of these orders and each sample
order are calculated. Then, the sum of these rank corre-
lations are denoted by R

(l)
k (strict definition will be given

later). This R
(l)
k represents the concordance between the

target ordering and the k-th attribute values of the objects
projected on the l-th complementary space. A new vector,
w(l+1), is chosen so that each element of this vector,w(l+1)

k ,

is as proportional to the corresponding concordance, R
(l)
k ,

as possible.
Now, we formally describe our RCDR. Let w(l) =

[w(l)
1 , w

(l)
2 , . . . , w

(l)
K ]� be the l-th vector of a basis.

These vectors are orthonormal to each other, i.e.,
w(l)�w(m)=0, l �=m and ‖w(l)‖=1. The dimension of the
final sub-space is denoted by K ′. We are given a set of
sample orders S = {O1, . . . , ON}, the basis of the l-th
sub-space, W (l), and the objects {xj |xj ∈ XS}, XS ≡
∪Oi∈SXi. From these, we derive the (l+1)-th vector,
w(l+1), as follows. First, we define R

(l)
1 , . . . , R

(l)
K as the

concordances between sample orders and the attribute val-

ues of the objects projected on the complementary space,

W (l)⊥. Let us focus on the sample order Oi and the k-th
attribute values of objects. Because the goal of a super-
vised ordering task is to estimate the orders of objects, the
relative ordering of attribute values is more important than
the attribute values themselves. We therefore sort the k-
th attribute values x

(l)
jk of all objects xj ∈ X(Oi) in de-

scending order, where x
(l)
jk denotes the k-th attribute value

of the object, x(l)
j projected on the l-th complementary

space. Note that the projected objects are represented as
[x(l)

j1 , . . . , x
(l)
jK ]� on the coordinates of the original space.

The resultant order is denoted byO(Xi, x
(l)
jk ). Because both

thisO(Xi, x
(l)
jk ) and the sample orderOi consist of the same

set of objects, the concordance between these two orders
can be measured by Kendall’s τ . Such rank correlations
are calculated between the k-th attribute values and each of
sample orders in S, and these correlations are summed up:

R
(l)
k =

∑
Oi∈S

τ(Oi, O(Xi, x
(l)
jk )). (6)

We use this sum as a measure of the concordance between
the k-th attribute values of objects and the target ordering.
Next, to fill the first requirement of the RCDR, the (l+1)-th
vector is chosen so that the above concordance is preserved
as much as possible. Let us consider the vector,

R(l) = [R(l)
1 , . . . , R

(l)
K ]�.

Because the elements of this vector are the concordances
between attribute values and the target ordering, this vec-
tor would point in the direction that preserves information
about the target ordering in the attribute space. Therefore,
we choose the vector w(l+1) so that it maximizes the co-
sine between w(l+1) andR(l) in the complementary space,



Input:
S = {O1, . . . , ON}: a sample order set
xj ∈ XS ≡ ∪Oi∈SXi: attribute value vectors
K′: the dimension of sub-space
Algorithm:
1 x

(0)
j ≡ xj

2 for l in 0, . . . , (K′ − 1)

3 computeR(l) s.t. R(l)
k =

P
Oi∈S τ(Oi, O(Xi, x

(l)
jk ))

4 if l > 0 then

W (l)=[w(1), . . . ,w(l)],R(l)⊥=(I−W (l)W (l)�)R(l)

else R(l)⊥=R(l)

5 w(l+1) = R(l)⊥/‖R(l)⊥‖
6 for xj in XS

7 x
(l+1)
j = x

(l)
j − w(l+1)w(l+1)�x

(l)
j

8 return W (K′) = [w(1), . . . ,w(K′)]

Figure 3. Kendall rank correlation dimension
reduction

W (l)⊥. Further, the vector R(l) is constant, and w(l+1) =
1; thus, the maximization of this cosine is equivalent to the
maximization between the dot product between R(l) and
w(l+1). This optimization problem is formalized as fol-
lows:

w(l+1) = arg max
w

w�R(l), (7)

subject to:‖w(l+1)‖=1,w(l+1)�w(m) = 0, m=1, . . . , l.

Note that one might think that w(l) becomes a zero vec-
tor, if l ≥ 2, but this is not the case. When the perform-
ing standard regression and Pearson’s correlation is maxi-
mized, w(l) would be a zero vector for l ≥ 2. This is be-
cause zero Pearson’s correlation implies such orthogonality
in the attribute space. However, because rank correlation
doesn’t imply orthogonality, w(l) is generally a non-zero
vector even if l ≥ 2.
Next, we solve Equation (7). The derivation of w(l+1)

can be easily shown by the following procedure: Calcu-
late the vector of the correlations sums, R(l), project this
vector to the l-th complementary space, and normalize the
projected vector. Once a new vector is derived, objects in
the l-th complementary space, x(l), are mapped to the new
complementary space, and iteratively the next vector can be
computed. This algorithm is shown in Figure 3. R(l) is
computed in line 3, projected to the current complementary
space in line 4, and normalized in line 5 so that its norm is
one. In lines 6 and 7, the objects in the current complemen-
tary space are projected to the new complementary space.
Because the concordance is measured by Kendall’s τ , we
call this method Kendall RCDR. The computational com-
plexities of lines, 3, 4, 5, and 6-7 are O(NL̄2K), O(KK ′),

Table 2. Vectors of a Basis derived by our RC-
DRs and the PCA

the first vector
method 1 2 3 4 5

KRCDR 0.70 0.64 0.31 −0.06 −0.06 0.146
SRCDR 0.70 0.64 0.32 −0.06 −0.06 0.173
PCA 0.02 −0.74 0.54 −0.39 0.00 0.393

the second vector
method 1 2 3 4 5

KRCDR −0.27 −0.17 0.93 −0.13 −0.13 0.007
SRCDR −0.30 −0.15 0.94 −0.05 −0.05 0.007
PCA −0.06 −0.18 0.39 0.90 0.00 0.213

NOTE: The first to fifth columns of each table show the compo-
nents of vectors, w(1) and w(2). In the last columns, values of
‖R(l)‖/N are shown for the RCDRs and the contribution ratio is
shown for the PCA.

O(K) andO(NL̄K), respectively; thus, the complexity per
one iteration is O(NL̄2K) (generally NL̄2 
 K ′), and
the total complexity is O(NL̄2KK ′). As noted before, be-
cause the complexity of Cohen’s method and RankBoost
practically approaches O(N2L̄4K), our Kendall RCDR is
faster than supervised ordering methods except for ERR
(see Table 1). To further save time complexity, we re-
place Kendall’s τ in line 3 of the algorithm by Spearman’s
ρ, because ρ and τ are highly correlated. We call this
method Spearman RCDR. Because its time complexity
is O(NKK ′L̄ log L̄), this method becomes faster than the
ERRmethod ifK ′ log L̄ < K. Therefore, our RCDRmeth-
ods satisfy the second requirement. Note that the Kendall
RCDR is faster than the Spearman RCDR in the special
case: Li = 2,Oi ∈ S. Joachims et al. proposed a method to
implicitly collect sample orders whose lengths are two [11].
The Kendall RCDR is useful in such cases.

4 Experiments

After showing a simple example of our RCDR methods,
we describe the experimental results for real data sets.

4.1 A Preliminary Experiment

To show what is produced by our two RCDR methods,
we present a simple example using artificial data. We give
the ideal weight vector by w∗ = [1, 1, 0.5, 0, 0], and set the
dimensions of the original space as K = 5 and the number
of objects as |X∗| = 1000. For each object xj ∈ X∗, the
first to the fourth attribute values are randomly generated
according to the normal distribution,N(0, 1), while the fifth



value is equal to the fourth. We generated 300 sample orders
as follows: Five objects were selected uniformly at random
fromX∗; then these objects were sorted in descending order
of w∗�xj . We applied Kendall RCDR, Spearman RCDR,
and PCA to this data set. The first and second vectors are
shown in the upper and lower parts of Table 2, respectively.
In each row, we show vectors derived by Kendall RCDR,
Spearman RCDR, and PCA. The first to the fifth columns
show the elements of vectors. In the last column, the norm
lengths of the sum vector of rank correlations per sample
order, ‖R(l)‖/N , are shown for the RCDR cases, and the
contribution ratios are shown for the PCA cases.
Let’s look at the first vector. The vectors derived by the

two RCDR methods show resemblance. This indicates that
one can use the faster RCDR method; concretely, Spearman
RCDR is better except for the case Li = 2. Because the
fourth and the fifth elements of the w∗ are zero, no infor-
mation useful for the target ordering is represented in these
axes. In our RCDR cases, the fourth and the fifth weights of
vectors are almost zero; thus, these useless axes can be ig-
nored. In the PCA case, the fourth weight is far from zero,
because no information about the target ordering is taken
into account. The PCA merely ignores axes that are corre-
lated in attribute space, such as in the fifth element. Further,
because variances in all dimensions are equal, the contri-
bution ratio is not so large, even if the target ordering is
decided by a linear function.
We turn to the second component. In the RCDR cases,

the correlation vector size ‖R(2)‖/N is much smaller than
‖R(1)‖/N ; this means that the second vector is far less in-
formative than the first, because the target ordering is gen-
erated by a linear function in this example. In the PCA case,
the contribution ratio indicates that useful information still
remains in this vector. Note that it is not guaranteed that the
‖R(l)‖/N decreases in accordance with the increase of l,
and vectors with bigger ‖R(l)‖/N don’t always contribute
to predicting the target ordering. However, we empirically
observed that if ‖R(l)‖/N is very small, the corresponding
vector is not informative. We believe that ‖R(l)‖/N can be
used as an index for the importance of vectors.

4.2 Experiments on Real Data Sets

We applied the methods described in Section 3 to real
data from questionnaire surveys [14]. The first data set was
a survey of preferences in sushi (Japanese food), and is de-
noted by SUSHI. In this data set, N = 500, Li = 10, and
|X∗| = 100. Objects are represented by 12 binary and 4
numerical attributes. The second data set was a question-
naire survey of news article titles sorted according to their
significance, and is denoted by NEWS. These news articles
were obtained from “CD-Mainichi-Newspapers 2003.” In
this data set, N = 4000, Li = 7, and |X∗| = 11872. Titles

were represented by 0-1 vectors indicating whether a spec-
ified keyword appears in the title. Among 18381 keywords,
we selected 595 keywords that were observed 30 or more
times. Additionally, we used 8 binary attributes to represent
article categories; thus, the number of attributes was 603 in
total.

To evaluate the usefulness of our dimension reduction
methods, we applied the ERR supervised ordering method
[14] to these two data sets. As a family of fitting functions,
a linear model was adopted. Sample order sets were parti-
tioned into testing and training sets. The ordering function
was learned from training a sample order set with original
attributes or reduced attributes. After learning, prediction
performance was measured by the mean of ρ between an
order in a testing set, Ot, and the corresponding estimated
order, Ôt. The larger ρ was, the better the prediction perfor-
mance was. The number of folds in cross-validation was ten
for SUSHI and five for NEWS. In the left and right parts
of the Figure 4, we show the variation of mean ρ in accor-
dance with the dimensions of the reduced space, K ′, for
SUSHI and NEWS, respectively. For both data sets, N or
Li was varied by eliminating sample orders or objects; the
results for these sets are shown in each sub-figure. N and/or
Li increased from the sub-figure (a) to (c); thus, orders be-
came the most difficult to estimate in the sub-figure (a) case.
The curves labeled by “KRCDR”, “SRCDR”, and “PCA”
show the mean ρ derived by ERR after applying Kendall
RCDR, Spearman RCDR, and PCA, respectively. The label
“ORIG” indicates that no reduction method was used, and
original attribute vectors were adopted.

From these figure, the following conclusions can be
drawn. First, the two RCDR methods show resemblance;
thus, the faster method can be used for dimension reduc-
tion. Second, both RCDRs performed better in predic-
tion than PCA. The difference was particularly clear when
the number of dimensions K ′ was small. This means that
RCDR successfully preserved information useful for esti-
mating target orders. Therefore, we can say that RCDR
is more effective than PCA when carrying out a super-
vised ordering task. Third, our RCDR technique could
improve the prediction performance. The curves labeled
“SRCDR”/“KRCDR” were compared with those labeled
“ORIG.” Surprisingly, the reduced vectors could lead to bet-
ter prediction than the original vectors, even through some
information might be lost by dimension reduction. We think
that this is because the models used for ordering were sim-
plified while useful information was preserved. This can be
confirmed by the fact that the improvements were promi-
nent when N and/or Li were small. The simpler model
could produce better generalization ability for a limited
number of samples. Therefore, our reduction technique is
useful for improving prediction performance.

We then compared the results in Figure 4 with the experi-
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NOTE: The concordances between sample orders and estimated orders were measured by Spearman’s ρ. These charts show
variation of ρ in accordance with the number of dimensions K′. N is the size of a data set, and Li is the length of sample
orders. The curves labeled “ORIG” show the result derived without application of dimension reduction. The curves labeled
“KRCDR”, “SRCDR”, and “PCA” show the estimation results after reducing dimensions by the corresponding method.

Figure 4. Comparison of dimension reduction methods on SUSHI (left) and NEWS (right) data sets



Table 3. Experimental results on real data sets in [14]
N :|Xi| Cohen RankBoost SVOR Order SVM ERR
500:10 0.364 [5] 0.384 [4] 0.393 [3] 0.400 [1] 0.397 [2]

SUSHI 100:5 0.354 [2] 0.356 [1] 0.284 [4] 0.315 [3] 0.271 [5]
100:2 0.337 [1] 0.281 [2] 0.115 [4] 0.208 [3] 0.010 [5]
4000:7 −0.008 [5] 0.350 [3] 0.244 [4] 0.366 [2] 0.386 [1]

NEWS 1000:5 −0.009 [5] 0.340 [3] 0.362 [1] 0.353 [2] 0.312 [4]
1000:2 −0.009 [5] 0.338 [3] 0.349 [1] 0.344 [2] 0.149 [4]

NOTE: This table shows the means of ρ. The rank of each method is shown in brackets. In this experiment, the same sets of
attributes were adopted for the SUSHI, while slightly different attributes were used for NEWS. PCA was applied to compress
keyword vectors, which were weighted by corresponding document frequencies. These 20 compressed attributes were used
together with 8 additional binary attributes representing categories. Detailed experimental conditions are described in the
extended version of [14] in our homepage [12].

mental results in [14]. The results in [14] were copied to Ta-
ble 3. Rather different attributes were used, as described in
the note of the table. Note that when we applied the SVOR
method together with the large attribute sets used in Fig-
ure 4, the prediction accuracy was degraded. In this experi-
ment, second-order polynomials were used for fitting func-
tions for the ERR case; thus, the results differ from those in
Figure 4. When observing these two results, for all NEWS
andSUSHI-100:5 data sets, a linear ERRwith RCDR could
make a better prediction than all supervised ordering meth-
ods in Table 3, which adopted non-linear models for order-
ing. Further, our proposed method was the second best for
the SUSHI-100:2 set, and the third best for the SUSHI-
500:10 set. Therefore, we can say that our RCDR methods
could successfully represent information about non-linear
relations between attribute values and target ordering in or-
thonormal subspace.

Finally, we can exploit the components of vectors for
qualitative analysis. We obtained the first vector, w(1),
derived from the SUSHI-500:10 data set by applying our
Kendall RCDR method. The components of the vectors,
w

(1)
1 , . . . , w

(K)
K , were sorted in descending order of their

absolute values, |w(1)
k |. The top 5 components were as fol-

lows:

w
(1)
13 = 0.5951 the frequency the user eats

w
(1)
15 = 0.4278 how many restaurants supply the sushi

w
(1)
1 = 0.4237 red fish (e.g., fatty tuna)

w
(1)
14 = 0.2822 inexpensiveness

w
(1)
12 = −0.2317 lightness or non-oiliness in tasting

From these components, we can say that “users primary pre-
fer sushi that they frequently eat and that supplied in many
sushi restaurants.”

5 Discussion and Conclusion

In this paper, we proposed a dimension reduction tech-
nique specialized for a supervised ordering task. The
method was designed so as to preserve information about a
relation from object attribute vectors to the target ordering.
For this purpose, we developed Kendall RCDR and Spear-
man RCDR. We then applied these methods to real data
sets. From the experimental results, we arrived at the fol-
lowing conclusions. First, the RCDR methods outperform
PCA when carrying out a supervised ordering task. Second,
by using the RCDR technique, performance in prediction
can be improved, especially when training samples are not
adequate. Finally, our two RCDR methods are compara-
ble in prediction performance. Therefore, the faster method
should be used; concretely, Spearman RCDR is better ex-
cept for the condition where Li = 2.
Intuitively speaking, in the l-th iteration of the RCDR,

the algorithm finds the vector that is most relevant to target
ordering. After that, by mapping attribute vectors to the new
sub-space, components in attributes related to this vector
are subtracted. At this time, it might be effective to subtract
the explained component in the target ordering from sample
orders. We will try such improvement by using a technique
like Diaconis’ spectral analysis [7].
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