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Abstract. Ordered lists of objects are widely used as representational
forms. Such ordered objects include Web search results or bestseller lists.
In spite of their importance, methods of processing orders have received
little attention. However, research concerning orders has recently become
common; in particular, researchers have developed various methods for
the task of Object Ranking to acquire functions for object sorting from
example orders. Here, we give a unified view of these methods and com-
pare their merits and demerits.

1 Introduction

We survey methods for learning to estimate orders, and empirically compare
these methods. The term Order indicates a sorted sequence of objects according
to some property. For example, the responses from Web search engines are lists
of pages sorted according to their relevance to queries. Best-seller lists, which are
item-sequence sorted according to sales volume, are used on many E-commerce
sites. In particular, several methods have been developed for learning functions
used to sort objects from example orders. We call this task Object Ranking and
emphasize its usefulness for sensory surveys3, information retrieval, and decision
making. We give a unified view of the object ranking task that are independently
proposed and discuss the connection with the other types of tasks dealing with
orders. We then show experimental results to reveal the pros and cons of these
object ranking methods.

We formalize the object ranking task in Section 2. We survey methods in
Section 3. Experimental results on artificial data and on real data are shown in
Sections 4 and 5, respectively. We discuss and summarize the results in Section 6.

2 Orders and Object Ranking

This section shows basic notions regarding orders and formalizes the object rank-
ing task.
3 quantification of respondents’ sensations or impressions
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2.1 Basics about Orders

We begin by defining basic notations regarding orders. An object or entity
to be sorted is denoted by xj . The universal object set, X ∗, consists of all
possible objects. Each object xj is represented by the attribute value vector
xj = [xj1, xj2, . . . , xjk]⊤, where k is the number of attributes. An order is de-
noted by O = xja≻xjb

≻ · · ·≻xjc . Note that the subscript j of xj doesn’t mean
“The j-th object in this order,” but that “The object is uniquely indexed by j
in X ∗.” An order x1≻x2 represents “x1 precedes x2.” An object set X (Oi) or
simply Xi is composed of all the objects in the order Oi. The length of Oi, i.e.,
|Xi|, is shortly denoted by Li. An order of all objects, i.e., Oi s.t. X (Oi) = X ∗,
is called a complete order; otherwise, the order is incomplete. Rank, r(Oi,xj) or
simply rij , is the cardinal number that indicates the position of the object xj in
the order Oi. For example, for Oi=x1≻x3≻x2, r(Oi,x2) or ri2 is 3. For two or-
ders, O1 and O2, consider an object pair xa and xb such that xa,xb∈X1∩X2, a̸=b.
These two orders are concordant w.r.t. xa and xb if the two objects are placed
in the same order, i.e., (r1a − r1b)(r2a − r2b) ≥ 0; otherwise, they are discordant.
Further, O1 and O2 are concordant if O1 and O2 are concordant w.r.t. all object
pairs such that xa,xb∈X1∩X2, a̸=b.

We then describe the distance between two orders, O1 and O2, composed of
the same sets of objects, i.e., X (O1) = X (O2) ≡ X . Various kinds of distance
for orders have been proposed [1]. Spearman distance dS(O1, O2) is widely used.
It is defined as the sum of the squared differences between ranks:

dS(O1, O2) =
∑

xj∈X

(
r1j − r2j

)2
. (1)

By normalizing the range to be [−1, 1], Spearman’s rank correlation ρ is derived.

ρ = 1 − 6dS(O1, O2)
L3 − L

, (2)

where L is the length of orders, i.e., L = |X |. This exactly equals the correlation
coefficient between ranks of objects. The Kendall distance dK(O1, O2) is another
widely used distance. Consider a set of object pairs, {(xa,xb) ∈ X × X}, a ̸=
b, xa,xb ∈ X , including either (xa,xb) or (xb,xa). The Kendall distance is
defined as the number of discordant pairs between O1 and O2 w.r.t. xa and xb.
Formally,

dK(O1, O2)=
1
2

(
M −

∑
{(xa,xb)}

sgn
(
(r1a−r1b)(r2a−r2b)

))
, (3)

where sgn(x) is a sign function that takes 1 if x>0, 0 if x=0, and −1 otherwise.
M = (L − 1)L/2 is the number of all object pairs. By normalizing the range to
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be [−1, 1], Kendall’s rank correlation τ is derived.

τ =1 − 2dK(O1, O2)
M

=
1
M

∑
{(xa,xb)}

sgn
(
(r1a−r1b)(r2a−r2b)

)
. (4)

The computational costs for deriving ρ and τ are O(L log L) and O(L2), re-
spectively. The values of τ and ρ are highly correlated, because the difference
between two criteria is bounded by Daniels’ inequality [2]:

−1 ≤ 3(L + 2)
L − 2

τ − 2(L + 1)
L − 2

ρ ≤ 1. (5)

Another inequality between dK and dS is Durbin-Stuart’s inequality:

dS ≥ 4
3
dK

(
1 +

dK

L

)
.

In [1], you can find further description about other types of distance, such as
Spearman’s footrule, Cayley distance, and Ulam distance, and their character-
istics.

Note that dK is a metric, but dS is not due to the violation of the triangular
inequality condition. If two or more objects are tied, we give the same midrank
to these objects [1]. For example, consider an order x5≻x2∼x3 (“∼” denotes tie
in rank), in which x2 and x3 are ranked at the 2nd or 3rd positions. In this case,
the midrank 2.5 is assigned to both objects.

2.2 An Object Ranking Task

regression order

ranking
function

unordered objects estimated order

concordant

Xu

S

random
permutation

O1 = x1≻x2≻x3 O3 = x2≻x1O2 = x1≻x5≻x2

Ôu = x1≻x5≻x4≻x3

x1
x3

x4
x5

!!!

Ō
∗

= x1≻x5≻x2≻x4≻x3
¯

Fig. 1. The object ranking task
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An Object Ranking task can be considered a regression or a fitting task whose
target variables are orders. Further, input samples comprise not a set of vectors,
but a set of orders, S = {O1, . . . , ON}, where N is the number of samples. The
regression curve corresponds to a regression order. Analogous to the case of a
regression function, a regression order is estimated so as to be concordant not
only with given sample orders in S, but also with orders that will be generated
in future. This task differs from a regression in two ways. First, since the tar-
get variables are orders, the modeling methods of regression orders and errors
are needed. A regression order is modeled by a ranking function, ord(·), which
represents a rule for sorting objects. Given an object set Xu, a ranking function
outputs the ideal order that consists of all objects in Xu. Though errors of real
values are modeled by an additive term of a random variable, errors in orders
are modeled by a random permutation ε(·). That is to say, a sample order Oi is
generated by ε(ord(Xi)). Second, since sample orders are generally incomplete,
there may be objects not observed in given samples (e.g., x4 in Figure 1). Such
objects should be ranked under the assumption that the neighboring objects in
the attribute space would be close in rank. Object ranking is also different from
classification, because no ordinal relations should be defined between classes.

We say that a ranking function is absolute if outputs of the function are
concordant with each other; otherwise, it is relative. That is to say, for any
Xu ⊆ X ∗, while an absolute ranking function outputs orders that are concordant
with orders a regression order that consists of all objects in X ∗, a relative ranking
function does not. Being absolute is also equivalent to the condition 3, “The
independence of irrelevant alternatives,” of the Arrow’s impossibility theorem
[3]. Concretely, given unordered sets {x1,x2,x3} and {x1,x2,x4}, an absolute
ranking function outputs orders that are concordant w.r.t. x1 and x2 regardless of
the existence of objects x3 or x4. However, a relative ranking function differently
sorts x1 and x2 due to the existence of the other objects, e.g., x1 ≻ x2 ≻ x3 and
x2 ≻ x4 ≻ x1. An absolute ranking function would be preferable in applications
such as filtering or recommendation. For example, if one prefers an apple to an
orange, he/she will always rank an apple higher than an orange when sorting
any set of fruits according to degree of preference. One example application
appropriate for relative ranking can be found in [4]. When summarizing multi-
documents, after extracting important sentences, these sentences are ordered. In
this case, appropriate order of sentences would be affected by the other extracted
sentences.

Object ranking is closely related to a notion of a Center of Orders [1]; given
sample orders S, center Ō is defined as the order that minimizes the sum of
the distances

∑
Oi∈S d(Oi, P (Ō,Xi)). Note that P (Ō,Xi) denotes the projection

of Ō on the set Xi, which is the order that consists of the objects in Xi and
is concordant with Ō. This notion is also referred by the other terms, such as
aggregated ranking [5], in machine learning or information retrieval disciplines.
We here adopt the term “center of orders” in statistics, because this would be
the firstly given denotation. This center differs from the above regression order
in the points that concordance only with given samples is considered and that
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no description of objects, e.g., attribute values, is employed. The computation of
centers is generally NP-hard, except for the cases such as employing Spearman’s
distance.

Object ranking is also related to Ordinal Regression [6, 7], which is a regres-
sion whose type of dependent variables is ordered categorical. Ordered categor-
ical variables can take one of a finite set of predefined values, like categorical
variables, and order these values additionally; for example, a domain of a vari-
able is {“good”,“fair”,“poor”}. Ordered categories and orders are different in
two points. First, while orders provide purely relative information, ordered cat-
egorical values additionally include absolute information. For example, while
the category “good” means absolutely good, x1 ≻ x2 means that x1 is rela-
tively better than x2. Second, the number of grades that can be represented by
ordered categorical variables is limited. Consider that there are four objects. Be-
cause at least two objects must be categorized into one of the three categories,
{“good”,“fair”,“poor”}, the grades of these two objects are indistinguishable.
However, orders can represent the differences of grades between any two objects.
Because a task of object ranking is more complicated than ordinal regression,
object ranking methods can be applicable to solve ordinal regression, but the
converse is not true. But, generally speaking, since it is not efficient to solve too
much complicated tasks, these two tasks should be carefully differentiated. For
example, the computational cost of SVMs for object ranking (see Table 3) is
about the square of O(N2L̄4), where L̄ is the mean length of sample orders. The
SVM specially designed for ordinal regression [8] demands less computational
cost O(N2|Y|2), where |Y| is the number of grades.

3 Object Ranking Methods

We present five object ranking methods. Their abbreviations are given in paren-
theses in the section titles.

3.1 Cohen’s method (Cohen)

Cohen’s method [9] is designed to find the order Ôu that maximizes∑
xa≻xb∈Ôu

P[xa≻xb|xa,xb], (6)

where P[xa≻xb|xa,xb] is the conditional probability given the attribute vectors
of xa and xb, and xa≻xb ∈ Ôu denotes all the ordered pairs concordant with Ôu.
Note that Ou consists of all the objects in a given set of unordered objects, Xu.
Unfortunately, because the maximization of Equation (6) is known as a linear
ordering problem [10], which is NP-hard, it is not tractable to find the optimal
solution if |Xu| is large. Cohen et al. hence proposed a greedy algorithm that se-
quentially chooses the most-preceding object in Figure 2. They proposed a more
elaborate approximation method too, but any strict or approximation algorithms
to solve the linear ordering problem [10] can be applied for this optimization.
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1: Ôu ← ∅
2: for all x ∈ Xu do
3: score(x) ←

P

x′∈Xu
P[x≻x′|x,x′]

4: end for
5: while Xu ̸= ∅ do
6: xtop ← arg maxx score(x)
7: Ôu ← Ôu≻xtop, Xu ← Xu − {xtop}
8: for all x ∈ Xu do
9: score(x) ← score(x) − P[x≻xtop|x,xtop]

10: end for
11: end while
12: return Ôu

Fig. 2. Cohen’s greedy sorting algorithm

P[xa≻xb|xa,xb] is learned by Cohen et al.’s Hedge algorithm. The Hedge is
an online algorithm, which is a variant of the Winnow [11]. Pairwise preference
judgments are determined based on the linear combination of subordinate or-
dering functions. Given one preference feedback sample, a weight for an ordering
function is increased according as the β parameter and the contribution of the
ordering function to the concordance with the feedback. We set the β to 0.9;
the attributes {xjl,−xjl}k

l=1 are used as ordering functions in our experiments.
To use the Hedge algorithm in off-line mode, the objects in S are iteratively
given as feedback, and iterations are repeated until the loss becomes stationary.
Their Hedge algorithm is designed so that it takes only ordinal information of
attributes into account and discards the numerical values themselves. Hence, our
experimental condition in which objects are represented by nominal or numerical
attributes are rather disadvantageous to this method.

3.2 RankBoost (RB)

Freund et al. proposed RankBoost [12, 13], that is a boosting algorithm targeting
orders. Inputs of the RankBoost are the feedback function Φ(xa,xb), which im-
plies xb ≻ xa if Φ(xa,xb) > 0, and a set of ranking features fl(xi), which conveys
partial information about the target ordering. Given these inputs, RankBoost
returns the final ranking H(xi) that works as a score function. First, the ini-
tial distribution is calculated by D1(xa,xb) = max(Φ(xa,xb), 0)/Z1, where Z1

is a normalization coefficient. Then, for each round t = 1, . . . , T , the algorithm
repeats the selection of weight αt and weak learner ht(x), and the update of
distribution by:

Dt+1(xa,xb) =
1
Zt

Dt(xa,xb) exp
(
αt(ht(xa) − ht(xb))

)
.

Weak learners capture some information about target orders from ranking fea-
tures, and output hypotheses such that ht(xb)>ht(xa) implies xb≻xa. αt and ht

are selected so that the normalization factor Zt is minimized. Once these weights
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and weak learners are acquired, unseen objects, x ∈ X ∗, are sorted in descending
order of H(x) =

∑T
t=1 αtht(x).

In our experiment, as ranking features, we adopt all terms that appear in
n-order polynomials of object attributes after attribute values are transformed
so as to range in [0, 1]. Let Φ(xa,xb) be 2P[xb≻xa]− 1. Weak learners are set to
ranking features themselves, i.e., h(x) = fl(x). Selection method of αt and ht is
the third option in section 3.2 in [13]. The number of rounds, T is set to 100.

3.3 SVM-based methods: Order SVM (OSVM) and Herbrich’s
method (SVOR)

We show two SVM-based methods: OrderSVM and SVOR. In summary, the
former is designed to discriminate whether or not a given object is ranked higher
than j-th, while the latter judges which of two objects precedes the other.

Since this paper concerns not categorical but ordinal rank, this method may
appear to be a groundless attempt to discriminate high-ranked objects from low-
ranked ones. However, we showed that the probability of finding an object sorted
above a fixed rank is concordant with the true score function. Thus, if a classifier
will discriminate the top j objects from the rest, its discrimination function must
be concordant to some extent with probability and therefore with the true score
function. This observation leads to the use of SVM as the estimator of a score
function in [14].

We first show Order SVM [14]. To enhance the reliability of this estimation,
we proposed training multiple SVMs with different threshold ranks and sorting
unseen objects using the average of those SVMs. Its learning is formulated as
the following optimization problem:

min
w,vt,bt

1
2
∥w∥2 +

λ

2

L−1∑
t=1

∥vt∥2 + C
L−1∑
t=1

m∑
i=1

L∑
j=1

ξj
i (t) (7)

s.t. sgn[j−t]((w+vt)·xj
i + bt) ≥ 1 − ξj

i (t), ξj
i (t) ≥ 0, forall i, j, t,

where xj
i is the feature vector of the j-th ranked object in the i-th order,

{xj
i}

j=1...L
i=1...m are the training samples, and C and λ are hyperparameters. In our

experiments, we set C = 0.1 and λ = 1 based on preparatory experiments on
a small data set. The sgn[z] is 1 if z ≥ 0; otherwise, −1. The SVM that dis-
criminates the top t objects from the rest is ft(x) = (w + vt) · x + bt. Thus,
the second regularizer

∑
t ∥vt∥2 makes all ft(x) agree on the predicted orders as

much as possible. The order is predicted by sorting objects according to the score
w · x. The dual problem of Equation (7) is similar to that of standard SVMs,
and any kernel function can be used instead of the inner products between fea-
ture vectors [14]. This method performs discriminations whether an object is
ranked higher than t for each t = 1, . . . , L−1. The number of failures in these
discriminations is equivalent to the absolute difference between object ranks in
the estimated order and sample order. These differences are then summed up
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over all objects in orders. This sum can be considered as representing Spear-
man footrule [1], which is absolute distance between two orders. Therefore, this
method aims minimizing the sum of distances in Spearman footrule between an
estimated order and each sample order.

We refer to the other SVM-based method as Support Vector Ordinal Regres-
sion (SVOR) [15] since its formulation is very similar to standard SVMs and the
work on it appears to be inspired by that of past ordinal regression works [16].
This method was independently developed as Ranking SVM by Joachims [17]
and was proposed in [18].

SVOR discriminates correctly ordered pairs from incorrectly ordered pairs. In
contrast to the Cohen method in which precedences are independently learned
from pairs and there is no guarantee that transitivity holds among the learned
preferences, SVOR uses a single score function for learning and thus avoids the
intractability problem of the sorting process shown in [9].

SVOR’s learning is formulated as the following optimization problem:

min
w

1
2
∥w∥2 + C

m∑
i=1

∑
1≤j<l≤L

ξjl
i (8)

s.t. w·(xj
i − xl

i)≥1−ξjl
i , ξjl

i ≥0, for ∀i, j < l,

where the same notations as OSVM are used for xj
i , m, L, and C (In our exper-

iments, C = 1). SVOR tries to find the direction w along which sample objects
are ordered so that the narrowest separation between samples is maximal. The
prediction of orders is done by sorting objects according to the score w · x. As
in the case of OSVM, the dual problem of Equation (8) can be written using only
the inner products of x; thus we can use any kernel function in SVOR, as well.
This method is designed so that for each object pair in orders, the discrimination
whether one object precedes the other is performed. The number of failures in
these discriminations is equivalent to Kendall distance. Therefore, this method
aims minimizing the sum of distances in Kendall distance between an estimated
order and each sample order.

3.4 Expected Rank Regression (ERR)

We turn to our Expected Rank Regression method [19]. In this method, after
expected ranks of objects are derived, the function to estimate these expected
ranks is learned using a standard regression technique.

To derive expected ranks, assume that orders Oi ∈ S are generated as follows:
First, a complete sample order O∗

i , which cannot be observed and consists of all
objects in X ∗, is generated. |X ∗| − |Oi| objects are then selected uniformly at
random, and these are eliminated from O∗

i ; then, the Oi is observed. Under this
assumption, a theoretical result in order statistics [20] shows that the conditional
expectation of rank of the object xj ∈ Xi in the unobserved complete order O∗

i

given the sample order Oi is

E[r(O∗
i ,xj)|Oi] ∝

r(Oi,xj)
|Oi| + 1

. (9)
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These expected ranks are calculated for all the objects in all the orders in a
sample set S. Next, standard regression techniques are applied to derive weights
of regression function, f(xj), which predicts the above expectation of ranks.
Samples for regression consist of the attribute vectors of objects, xj , and their
corresponding expected ranks, r(Oi,xj)/(|Oi| + 1); thus the number of samples
becomes

∑
Oi∈S |X (Oi)|. Once weights of f(xj) are learned, the order Ôu can be

estimated by sorting the objects xj ∈ Xu according to the corresponding values
of f(xj).

Below, we describe a rationale why this ERR works: We assume that sample
orders are generated according to the Thurstone’s model (case V) [21]. In this
model, sample orders are generated by sorting objects x ∈ Xu in the ascending
order of the scores, x, f∗(x), that follow the following normal distribution:

f∗(x) ∼ N (µ(x), σ2), (10)

where µ(x) and σ are mean and standard deviation, respectively. A complete
regression order, Ō∗, is determined by sorting all objects in X ∗ in the ascending
order of the mean scores µ(x), and random permutation is caused by the additive
noise in scores of objects; the above complete sample orders, O∗

i , i = 1, . . . , |S|,
are consequently generated. Next, we consider the probability that a pair of ad-
jacent objects in Ō∗ permutes. We assume that such probabilities are equal over
all adjacent pairs, because there is no prior information that one pair is more
frequently permuted than the other pair. This assumption makes the differences
of the mean scores between these adjacent pairs, |µ(xi)−µ(xj)|, to be constant.
Further, these mean can be replaced with rank in Ō∗ without loss of generality,
because an order derived based on scores is invariant for any linear transforma-
tion in scores. We then learn a function to predict rank r(Ô∗,x) for any object
x. Expectations of these ranks over random elimination of objects can be ob-
tained by equation (9), and noise in scores follows normal distribution as in 10.
Consequently, we can estimate ranks in Ō∗ by applying standard regression to
samples, (xj , r(Oi,xj)/(|Oi| + 1)).

In our experiments, n-order polynomials are adopted as a class of regression
functions. No regularization terms were adopted in regression.

4 Experiments on Artificial Data

To reveal the characteristics of object ranking methods, we applied these meth-
ods to artificial data.

4.1 Experimental Conditions

Artificial data were generated in three steps. First, we generated two types of
vectors: numerical (num) and binary (bin). Each numerical vector consists of
5(≡k) attributes, which follow the normal distribution, N(0, 1). Binary vectors
are composed of 15(≡k) attributes, and are randomly generated so that every
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object is represented by different value vectors. Note that, when the methods
designed for numeric attributes, binary values are converted to the number, 0 or
1. Second, true regression orders are determined based on these attribute values.
Objects are sorted according to the values of the function:

utility(xj)=(1 +
k∑

l=1

wlxjl)dim,

where wl are random weights that follow the normal distribution, N (0, 1). We
tested two settings: linear (dim=1) and non-linear (dim=2 or 3), denoted by
li and nl, respectively. Finally, N sample orders Oi ∈ S were generated by
randomly eliminating objects from the true regression orders.

As an error measure, we used Spearman’s ρ (Equation (2)) between the
estimated order and the above true regression order. If ρ is 1, the two orders are
completely concordant; if it is −1, one order is the reverse of the other. We will
show the means of ρ over a 10-fold cross validation for 10 different weight sets of
utility(xj). Regardless of the length of training orders, the size of the unordered
set, |Xu|, is set to 10, because errors cannot be precisely measured if orders are
too short.

4.2 Experimental Results

As the basic experimental condition, we chose N=300, Li=5, and |X ∗|=1000.
Under this condition, the probability that one object in Xu is unobserved in the
training samples seems rather low (25.8%). However, the probability that the
object pairs in Xu become unobserved, which is intrinsic to ordinal relations,
is fully high (99.5%). Therefore, we consider that this data set is well suited
to evaluate the generalization ability. Note that algorithm parameter settings
described in Section 3 are tuned for this basic condition under a noisy condition
described later. By default, we used this basic condition in the following experi-
ments. The other settings were: For Cohen, we adopt their Hedge and their greedy
search algorithm. Note that we also applied the exhaustive search to derive the
optimal orders that maximizes equation (6), but the results were rather inferior
to that by the greedy search in Figure 2. For RB, ranking features are all terms
of a second-order polynomial. For SVOR and OSVM, Gaussian kernels with σ = 1
were used. For ERR, the second-order polynomials was used as class of regression
functions.

Table 1(a) shows the means of ρ under this basic setting. Each row corre-
sponds to each of the four data sets described in Section 4.1, and each column
corresponds to each method in Section 3. The rank of each method is shown in
brackets. Except for the difference between RB and SVOR of nl/bin, the differ-
ence between each method and the next-ranked one is statistically significant at
the level of 1% when using a paired t-test and a Bonferroni multiple comparison.

Defects of the Cohen would be due to the fact that only the ordinal information
of attributes is considered, as described in Section 3.1. The ERR methods were
inferior in bin cases, but were superior in num cases. The performance with
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Table 1. Basic Results: |X ∗|=1000, Li=10, N=300

(a) under noiseless conditions
Cohen RB SVOR OSVM ERR

li/num 0.860 [5] 0.959 [2] 0.914 [3] 0.886 [4] 0.982 [1]
li/bin 0.966 [2] 0.978 [1] 0.885 [4] 0.868 [5] 0.895 [3]
nl/num 0.682 [5] 0.763 [4] 0.911 [2] 0.878 [3] 0.935 [1]
nl/bin 0.786 [5] 0.875 [1] 0.866 [2] 0.842 [3] 0.830 [4]

(b) under noisy conditions
Cohen RB SVOR OSVM ERR

nl/num 0.652 [5] 0.719 [4] 0.818 [1] 0.797 [3] 0.813 [2]
nl/bin 0.764 [5] 0.842 [1] 0.817 [2] 0.809 [3] 0.796 [4]

nl/bin data was unstable because the weights of a regression function have
to be determined based on two points, 0 and 1. The SVM-based method could
avoid this problem by adopting the regularization property. The two SVM-based
methods, OSVM and SVOR, also bear a resemblance to each other. The RB was
rather inferior for the nl case, but it could be improved by increasing the number
of rounds T . For example, when we tried the number of iterations T = 1000 for
basic data under a noisy condition in Table 1(b), the ρ improved from 0.720 to
0.765. However, it was too slow compared with other methods, so we had to set
T = 100 when performing our experiments.

Table 1(a) shows the results under a noiseless condition; that is to say, all
the sample orders are perfectly concordant with the corresponding regression
order. To test the robustness of the methods against the noise in the orders, we
permuted two randomly selected pairs of adjacent objects in the original sample
orders. By changing the number of times that objects are permuted, the noise
level could be controlled. The order noise level is measured by the probability
that the ρ between the original order and the permuted one is smaller than the ρ
between the original order and a random one. This probability can be computed
by using the statistical property of Spearman’s ρ. We generated four types of
data whose noise levels were 0%∼10%. Note that the 0% level noise is equivalent
to the noiseless case.

Figure 3 shows the means of ρ in accordance with the order noise level for the
nl/num data. In accordance with the increase of noise, the empirical ρ (between
the estimated order and the permuted sample order) drastically became worse,
whereas true ρ (between the estimated order and the noiseless order that cannot
be observed in non-artificial data) did not decrease to a significant degree. For
example, at the 10% noise level, the empirical ρ by the ERR for the nl/num data
is 0.409, while the true ρ is 0.904. We then examined the robustness of these
methods against noise in attribute values. For the numerical attributes, the α%
level of noise is obtained by multiplying the true values by the random factors
that follow N(1, α/100). Note that sample orders were calculated based on noise-
less attribute values. Figure 4 shows the means of ρ in accordance with the level
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of attribute noise for the nl/num data. We generated five types of data whose α
values were set to 0%∼160%. The results shown in Figures 3 and 4 indicate a
clear contrast. The SVM-based methods were robust against attribute noise, but
not against order noise. Conversely, the other methods were robust against order
noise, but not against attribute noise. This could be explained as follows: The
SVM-based methods are sensitive to order noise because the exchanged ordered
pairs tend to become support vectors, while perturbation of attribute values does
not affect the support vectors as much. Inversely, the non-SVM-based methods
can learn correctly if correct orders constitute the majority of the sample orders;
thus, these methods are robust against order noise. However, any perturbation
in attribute values affects their performance.

The noiseless setting of Table 1(a) is unrealistic, because real data generally
include noise. We therefore investigated the behavior of object ranking meth-
ods under more realistic noisy conditions. According to the above results, the
relative superiority of the prediction performance among the methods heavily
depended on types of noise. That is to say, while the non-SVM-based methods
were superior for data with more order noises, the SVM-based ones were superior
for data with more attribute noises. Instead of comparing the relative superiority
of methods, we investigated the patterns of the changes of the relative predic-
tive performance in accordance with the variation of data properties. To check
these, noise levels were selected so that ERR and SVOR gave roughly equal per-
formance. In both the nl/num and the nl/bin data sets, order noise levels were
set to 1%. While the attribute noise level of the nl/num was 40%, binary values
were flipped with a probability of 1% for the nl/bin. We however used noiseless
data when testing the variation in the predictive performance according to the
length of sample orders (Figure 5(c)), because the shorter sample orders were
more seriously influenced by order noise. Along with fixing the algorithm pa-
rameter settings, we tested the changes of the prediction performance according
to variation in the number of objects |X ∗|, the number of sample orders N , and
the length of orders Li.
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Fig. 5. Variation in the number of objects |X ∗|, the number of sample orders N , and
the length of sample orders Li
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Table 1(b) shows the results under this noisy condition for the basic data.
Except between SVOR and ERR of nl/num, the difference between each method
and the next-ranked one is statistically significant at the level of 1% when using
a paired t-test and a Bonferroni multiple comparison. Figure 5 shows the means
of ρ in accordance with the variations in the other properties of samples sets.
The results for the nl/num and the nl/bin data are shown in each column. Rows
(a), (b), and (c) show results when the number of objects |X ∗|, the number of
sample orders N , and the length of orders Li were varied, respectively.

In terms of Figure 5(a), the probability that an object in test orders has not
been included in training samples decreases in accordance with the increase of
|X ∗|; accordingly, a greater generalization ability is required. SVM-based meth-
ods were better if |X ∗| was small, but their performance dropped for larger |X ∗|.
Adoption of soft-margin parameter C tuning for |X ∗| was required in order for
the SVM-based methods to work well. The non-SVM-based methods results were
rather flat. This would be because the number of model parameters to determine
is fewer in these methods than in the SVM-based ones.

Turning to Figure 5(b) and (c), the Cohen method performed more poorly for
the larger Li. This would be because the paired comparison model used in the
Cohen method assumes independence among ordered pairs. For small N or Li,
the performance of the SVM-based methods was inferior to those of the others.
However, the performance was improved in accordance with the increase of N
or Li. This might be because the SVM-based methods are over-fitted when the
sample set is so small that the learned functions are not sparse. We also expected
that this observation arises from the strength of model biases. Hence, we further
checked the performance by changing the parameters of the methods, but we
could not find a simple relation between the number of parameters to learn and
the number of observed samples.

5 Experiments Using Real Data

We applied the methods described in Section 3 to real data from the following
questionnaire surveys. The first data set was a survey of preferences in sushi
(Japanese food), and is denoted as SUSHI 4 [22, 19]. In this data set, N = 500,
Li = 10, and |X ∗| = 100. Objects are represented by 12 binary and 4 numerical
attributes. By using the k-o’means clustering method [23, 24], we generated two
sample orders whose ordinal variances were broad and narrow. The probabili-
ties that objects were selected in Oi were not uniform, as assumed in an ERR
method. Objects were selected independently with probabilities that range from
3.2% to 0.13% from X ∗. The second data set was a questionnaire survey of news
articles sorted according to their significance, and is denoted as NEWS. These
news articles were obtained from “CD-Mainichi-Newspapers 2003.” In this data
set, N = 4000, Li = 7, and |X ∗| = 11872. The variance among sample orders
was slightly broader than the tight SUSHI data. Articles were represented by

4 This data set can be downloaded from http://www.kamishima.net/sushi/
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keyword and document frequencies, and these 22297 elements were compressed
to 20 attributes using latent semantic indexing (a contribution ratio is about
0.9). Additionally, we used 8 binary attributes to represent article categories.
For both data sets, the N or Li were varied by eliminating sample orders or
objects. Orders became difficult to estimate as N and/or Li decreased. Errors
were measured by the empirical ρ between the sample order and the estimated
one. The algorithm’s parameters were set to the practical setting in Section 4.2.
Ideally, these parameters should be tuned by using cross validation, but some
methods were too slow to perform such fine tuning. Therefore, these experi-
ments reveal not the relative superiority among methods but the changes in
performance along with the variation in N and/or Li.

Table 2. Results on real data sets

N :Li Cohen RB SVOR OSVM ERR

S
U

S
H

I

500:10(b) 0.364 [5] 0.384 [4] 0.393 [3] 0.400 [1] 0.397 [2]
100:5(b) 0.354 [2] 0.356 [1] 0.284 [4] 0.315 [3] 0.271 [5]
100:2(b) 0.337 [1] 0.281 [2] 0.115 [4] 0.208 [3] 0.010 [5]
500:10(n) 0.543 [5] 0.583 [4] 0.719 [1] 0.708 [2] 0.705 [3]
100:5(n) 0.548 [5] 0.612 [4] 0.646 [2] 0.655 [1] 0.617 [3]
100:2(n) 0.577 [1] 0.542 [2] 0.522 [4] 0.540 [3] 0.421 [5]

N
E
W

S 4000:7 −0.008 [5] 0.350 [3] 0.244 [4] 0.366 [2] 0.386 [1]
1000:5 −0.009 [5] 0.340 [3] 0.362 [1] 0.353 [2] 0.312 [4]
1000:2 −0.009 [5] 0.338 [3] 0.349 [1] 0.344 [2] 0.149 [4]

In Table 2, we show the means of ρ. The column labeled N :Li represents
the number and the length of sample orders, and the letter, “b” or “n” denotes
the types of variance, broad or narrow, respectively. In the SUSHI case, the
differences among methods were less clear than those in artificial data. Though
we expected that the SVM would work well for a tight data set, the variance in
sample orders was less affected. We could say that this is due to the fitness of the
SUSHI data to a linear model; we observed that the other method worked well
when using a linear model. ERR showed good performance for large N or Li,
but poorer results for small N or Li. This is due to too complicated model for
regression, because the mean ρ increased to 0.249 by adopting a simpler linear
regression model for 100:2:(b). Inversely, RB was better for small N or Li. This is
due to the setting of T = 100, the number of rounds. When T = 300, we observed
that performance for large N or Li improved, but it was depressed for small N
or Li because of over-fitting. In the case of NEWS, sample orders were tight, but
the correlation between sample orders and attributes were remarkably weak.
Thus, all methods performed poorly. For such weak attributes, Cohen performed
very poorly, even though we tuned β parameters. Again, ERR was better for
large N or Li, but was poorer for small N or Li. However, this was due to the
model complexity as in the above SUSHI case. In summary, the performances of
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four methods other than Cohen were roughly equal, when dealing with these real
data.

6 Discussion and Conclusions

We first discuss the relation between object ranking methods and the proba-
bilistic generative models for orders (see appendix A). These models can be
categorized as four types [1, 25]:

– Thurstonian: Objects are sorted according to the corresponding score.
– Paired comparison: Objects are compared in pairwise, and all objects are

sorted based on these comparison results.
– Distance-based : Orders are generated with the probability that is determined

based on the distance from a modal order.
– Multistage: Objects are sequentially arranged top to end.

Object ranking methods are commonly designed by incorporating a way to deal
with attributes into these models. Error or loss in orders are designed based on
these generative models. In Cohen, because the precedence between object pairs
is firstly determined based on the learned model, we consider that this method
adopts a paired comparison model. Regarding RB and SVM methods, a modal
order is determined by sorting the outputs of a score function. Loss functions
between a modal order and sample orders are defined based on the discordance
between them. Therefore, these methods can be considered to be related to the
distance-based model. While RB and SVOR adopt Kendall distance, OSVM adopts
Spearman footrule. Finally, ERR is based on the Thurstonian model as described
in section 3.4.

Table 3. Computational complexities

Cohen RB SVOR OSVM ERR

Learn NL̄2k NL̄2k N2L̄4k N2L̄4k NL̄k2

Sort L2 L log L L log L L log L L log L

We next summarize computational complexities of learning and soring time
in the first and second rows of Table 3. We assume that the number of ordered
pairs and of objects in S are approximated by NL̄2 and NL̄, respectively, where
L̄ is the mean length of the sample orders. The SVM’s learning time is assumed
to be quadratic in the number of training samples. The learning time of Cohen’s
Hedge algorithm or the RB is linear in terms of the NL̄2, if the number of
iteration T is fixed. However, if T is adaptively chosen according to NL̄2, their
time complexity becomes super-linear. In terms of the number of attributes k, the
SVM-based methods depend on the number of non-zero attribute values; thus
it is practically sub-linear. Standard regression used in ERR can be computed
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faster, if attributes are sparse. Generally, in practical use, the learning time of
the SVM-based methods is slow, that of Cohen and RB is intermediate, and that
of ERR are much faster. In terms of time for sorting of xj ∈ X , the Cohen greedy
requires O(L2) while the others perform more quickly, O(L log L).

We finally summarize the pros and cons of each method. Our new ERR
method was practically the fastest without sacrificing its prediction performance.
This quickness make it to try many parameter settings in relatively short times.
Even for the result where ERR were poor, e.g., SUSHI:100:2(b), we observed that
it could be improved by re-tuning. In this method, the uniform distribution of
the object observation is assumed, but SUSHI result demonstrated the robust-
ness against the violation of this assumption to an extent. However, this method
requires quadric time in terms of k, if attribute vectors are dense.

The most prominent merit of Cohen is to be an on-line method. For on-
line learning purposes, the other methods cannot be used. Though the Cohen
performed rather poorly in our experiments, this is because the Hedge algorithm
is designed to take into account as its attributes only ordinal information. We
observed that the performance could be improved by using other classifier, such
as the naive Bayes, instead of the Hedge, because this method was designed
to deal with categorical or numerical attributes. Further, our experiments were
absolute ranking task (see section 2.2), but the Cohen acquires relative ranking
function, because this method adopts a paired comparison model.

The unique property of the RB is rich options of weak learners. Because of this
property, various types of attributes can be used. If objects are represented by
vectors whose attribute types are mixtures of ordinal and numerical/categorical,
the other algorithm cannot be used. Our experimental results of RB were rather
inferior, but we observed that this could be considerably improved by adaptively
increasing T . Due to too slow convergence, we had to stop iterations after the end
of the drastic error drops at the beginning stage. However, it takes as same or
more computation time as the SVM-based methods until complete convergence,
and it should be also noted that too large T would cause over-fitting.

Like a standard SVM, the SVOR and OSVM are advantageous if k is large.
The our experimental results demonstrated that the two SVM-based methods
and the others are robust against different types of noise. Hence, for data in
which orders are permuted, the non-SVM-based methods are preferable, while
for data whose attributes are disturbed, the SVM-based methods are preferable.
The demerit of the SVM-based methods are slowness. The learning complexity
of the two SVM-based methods is the same, but the OSVM is practically slower.
However, it was more robust against order noise than SVOR.

A Probabilistic Generative Models for Orders

We briefly summarize the probabilistic generative models for orders. Readers
that needs further information should refer a textbook [1] or a survey paper [25].
As described before, these models can be categorized into four types: Thursto-
nian, paired comparison, distance-based, and multistage. All these are generative
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model for complete orders, in which all objects are included. We sequentially in-
troduce these four types.

As seen in the name Thurstonian, this type of models are firstly proposed
by Thurstone [21] and are also called by order statistics models. In this model,
objects, xi ∈ X ∗, are sorted according to their corresponding scores. This score
is a real value probabilistic function that is defined as

score(xi) = µ(xi) + ϵ(xi),

where µ(xi) is the mean score for the object xi and ϵ(xi) follows the distribution
with zero mean. In original Thursone’s model, the normal distribution is used as
ϵ(xi). Especially, the “case V”, in which the variance of the normal distribution
is constant over all objects, is widely used. In this case, the probability the object
xi precedes the xj is simply computed by [26]:

P[xi ≻ xj ] = P[score(xi) > score(xj)] = Φ
(

µ(xi) − µ(xj)√
2σ

)
,

where Φ(·) is the normal c.d.f. and σ2 is its variance.
In a paired comparison model , which object precedes the other is determined

for each pair of objects. Accordingly, L(L − 1)/2 ordered pairs are generated,
where L is the total number of objects, i.e. L = |X ∗|. If this set of ordered pairs
is cyclic, i.e., xi≻xj , xj≻xk, and xk≻xi, then this set is discarded, and all pairs
are re-generated; otherwise, a total order is uniquely determined. The saturated
model having L(L− 1)/2 parameters, which represent the probabilities that one
object precedes the other, is called by Babington Smith model. Babington Smith
firstly showed the moments of this model in [27]. After that, some models with
fewer parameters have been proposed. The next model having L parameters is
called Bradley-Terry model [28]:

P[xi ≻ xj ] =
f(xi)

f(xi) + f(xj)
,

where f(·) is positive real function.
In distance-based model , orders, O, follows the following distribution

P[O] =
1

Z(λ)
exp

(
−λd(O0, O)

)
,

where λ is a concentration parameter, which is non-negative real value, the
O0 is a modal ranking, at which this distribution is peaked, d(·, ·) denotes the
distance between orders, and Z(λ) is a normalization factor. Especially, this
model is called Mallows φ-model and Mallows θ-model if Kendall and Spearman
distance are adopted, respectively. This is because these are the special cases of
the Mallows model [29], which is a kind of a paired comparison model. If i-th
and j-th ranked objects in a generated order are xi and xj , respectively, Mallows
model is defined as

P[xi ≻ xj ] =
θi−jφ−1

θi−jφ−1 + θj−iφ
,
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where θ and φ are positive real parameters. If θ = 1 (resp. φ = 1), this model
becomes Mallows φ-model (resp. Mallows θ-model).

Finally, in multistage model , objects are sequentially arranged top to end.
Plackett-Luce model [30], which is a kind of a multistage model, generates an or-
der, O = xi1≻xi2≻ · · ·xiL

, with the following procedure. The top ranked object,
xi1 , is chosen with the probability:

f(xi1)∑
x∈X∗ f(x)

,

the second ranked object, xi2 , is chosen with the probability:

f(xi2)∑
x∈X∗,x̸=xi1

f(x)
,

and these procedures are iterated L − 1 times. Orders generated by this model
satisfies Luce’s choice axiom: Roughly speaking, the probability that an object
is top-ranked equals to the product of the probability that the object is top-
ranked in any subset and the probability that the subset contains the object.
More formally, PX [x] denotes the probability that an object x is top ranked
among the object set, X , and PX [X ′], X ′⊂X , denotes the probability that the
top object in X is contained in X ′. A set of choice probabilities is said to satisfy
Luce’s choice axiom if ∀X ⊂ X ∗ with at least two objects, xi and xj , satisfy:

– If P{xi,xj}[xi] > 0 ∀xi,xj ∈ X then ∀xk ∈ X ′ ⊂ X ,PX [xk]=PX ′ [xk]PX [X ′],
– If P{xi,xj}[xi] = 0 ∃xi,xj ∈ X then if xj ∈ X , xj ̸= xi, PX [xj ]=PX\{xi}[xj ].

This Plackett-Luce model is equivalent to the above Thurstonian model, if ϵ(·)
follows Gumbel distribution, whose c.d.f. is 1 − exp(− exp(x)).
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