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Abstract—With the spread of data mining technologies and
the accumulation of social data, such technologies and data are
being used for determinations that seriously affect people’s
lives. For example, credit scoring is frequently determined
based on the records of past credit data together with statistical
prediction techniques. Needless to say, such determinations
must be socially and legally fair from a viewpoint of social
responsibility; namely, it must be unbiased and nondiscrimi-
natory in sensitive features, such as race, gender, religion, and
so on. Several researchers have recently begun to attempt the
development of analysis techniques that are aware of social fair-
ness or discrimination. They have shown that simply avoiding
the use of sensitive features is insufficient for eliminating biases
in determinations, due to the indirect influence of sensitive
information. From a privacy-preserving viewpoint, this can be
interpreted as hiding sensitive information when classification
results are observed. In this paper, we first discuss three
causes of unfairness in machine learning. We then propose
a regularization approach that is applicable to any prediction
algorithm with probabilistic discriminative models. We further
apply this approach to logistic regression and empirically show
its effectiveness and efficiency.

Keywords-fairness, discrimination, privacy, classification, lo-
gistic regression, information theory

I. INTRODUCTION

Data mining techniques are being increasingly used for
serious determinations such as credit, insurance rates, em-
ployment applications, and so on. Their emergence has
been made possible by the accumulation of vast stores of
digitized personal data, such as demographic information,
financial transactions, communication logs, tax payments,
and so on. Additionally, the spread of off-the-shelf mining
tools have made it easier to analyze these stored data.
Such determinations often affect people’s lives seriously.
For example, credit scoring is frequently determined based
on the records of past credit data together with statistical
prediction techniques.

Needless to say, such serious determinations must be
socially and legally fair from a viewpoint of social responsi-
bility; that is, they must be unbiased and nondiscriminatory
in relation to sensitive features such as race, gender, religion,
and so on. Blindness to such factors must be ensured
in determinations that affect people’s lives directly. Thus,

978-0-7695-4409-0/11 $26.00 © 2011 IEEE
DOI 10.1109/ICDMW.2011.83

643

sensitive features must be carefully treated in the processes
and algorithms for machine learning.

In some cases, some features must be carefully processed
for reasons other than avoiding discrimination. One such
reason would be contracts between service providers and
customers. Consider the case in which personal information
about customer demographics is collected to recommend
items at an e-commerce site. If the site collects these data
under a privacy policy that restricts the use of the data for
the purpose of recommendation, personal information must
not be used for the selection of customers to be provided
personalized discount coupons. In this case, the use of
unrestricted data would be problematic. Because purchasing
logs are influenced by recommendations based on personal
information, careful consideration would be required for the
use of such data.

Several researchers have recently begun to attempt the
development of analytic techniques that are aware of social
fairness or discrimination [1], [2]. They have shown that the
simple elimination of sensitive features from calculations
is insufficient for avoiding inappropriate determination pro-
cesses, due to the indirect influence of sensitive information.
For example, when determining credit scoring, the feature
of race is not used. However, if people of a specific race
live in a specific area and address is used as a feature for
training a prediction model, the trained model might make
unfair determinations even though the race feature is not
explicitly used. Such a phenomenon is called a red-lining
effect [2] or indirect discrimination [1], and we describe
it in detail in section II-A. New analytic techniques have
been devised to deal with fairness. For example, Calders
and Verwer proposed a naive Bayes that is modified so as
to be less discriminatory [2], and Pedreschi et al. discussed
discriminatory association rules [1].

In this paper, we formulate causes of unfairness in
machine learning, develop widely applicable and efficient
techniques to enhance fairness, and evaluate the effective-
ness and efficiency of our techniques. First, we discuss
the causes of unfairness in machine learning. In previous
works, several notions of fairness have been proposed and
successfully exploited. Though these works focused on
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resultant unfairness, we consider unfairness in terms of
its causes. We describe three types of cause: prejudice,
underestimation, and negative legacy. Prejudice involves a
statistical dependence between sensitive features and other
information; underestimation is the state in which a classifier
has not yet converged; and negative legacy refers to the
problems of unfair sampling or labeling in the training data.
We also propose measures to quantify the degrees of these
causes using mutual information and the Hellinger distance.

Second, we then focus on indirect prejudice and develop
a technique to reduce it. This technique is implemented
as regularizers that restrict the learners’ behaviors. This
approach can be applied to any prediction algorithm with
discriminative probabilistic models, such as logistic regres-
sion. In solving classification problems that pay attention
to sensitive information, we have to consider the trade-
off between the classification accuracy and the degree of
resultant fairness. Our method provides a way to control
this trade-off by adjusting the regularization parameter. We
propose a prejudice remover regularizer, which enforces a
determination’s independence from sensitive information. As
we demonstrate, such a regularizer can be built into a logistic
regression model.

Finally, we perform experiments to test the effectiveness
and efficiency of our methods. We compare our methods
with the two-naive-Bayes on a real data set used in a previ-
ous study [2]. We evaluate the effectiveness of our approach
and examine the balance between prediction accuracy and
fairness.

Note that in the previous work, a learning algorithm that is
aware of social discrimination is called discrimination-aware
mining. However, we hereafter use the terms, ‘unfairness’ /
‘unfair’, instead of the ‘discrimination’ / ‘discriminatory’ for
two reasons. First, as described above, these technologies
can be used for complying with laws, regulations, or con-
tracts that are irrelevant to discrimination. Second, because
the term discrimination is frequently used for the meaning
of classification in the machine learning literature, using this
term becomes highly confusing. Worse yet, in this paper, we
target a discriminative model, i.e., logistic regression.

We discuss causes of unfairness in section II and propose
our methods for enhancing fairness in section III. Our
methods are empirically compared with two-naive-Bayes in
section IV. Section V shows related work, and section VI
summarizes our conclusions.

II. FAIRNESS IN DATA ANALYSIS

After introducing an example of the difficulty in fairness-
aware learning, we show three causes of unfairness and
quantitative measures for the degrees of these causes.

A. llustration of the Difficulties in Fairness-aware Learning

We here introduce an example from the literature to
show the difficulties in fairness-aware learning [2], which
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is a simple analytical result for the data set described in
section IV-B. The researchers performed a classification
problem to predict whether the income of an individual
would be high or low.

The sensitive feature, S, was gender, which took a value,
Male or Female, and the target class, Y, indicated whether
his/her income is High or Low. The sensitive feature, S,
was gender, which took a value, Male or Female, and the
target class, Y, indicated whether his/her income is High
or Low. There were some other non-sensitive features, X.
The ratio of Female records comprised about 1/3 of the data
set; that is, the number of Female records was much smaller
than that of Male records. Additionally, while about 30% of
Male records were classified into the High class, only 11%
of Female records were. Therefore, Female-High records
were the minority in this data set.

In this data set, we describe how Female records tend
to be classified into the Low class unfairly. Calders and
Verwer defined a discrimination score (hereafter referred to
as the Calders-Verwer score (CV score) by subtracting the
conditional probability of the positive class given a sensitive
value from that given a non-sensitive value. In this example,
a CV score is defined as

Pr[Y=High|S=Male] — Pr[Y'=High|S=Female].

The CV score calculated directly from the original data is
0.19. After training a naive Bayes classifier from data involv-
ing a sensitive feature, the CV score on the predicted classes
increases to about 0.34. This shows that Female records are
more frequently misclassified to the Low class than Male
records; and thus, Female-High individuals are considered
to be unfairly treated. This phenomenon is mainly caused
by an Occam’s razor principle, which is commonly adopted
in classifiers. Because infrequent and specific patterns tend
to be discarded to generalize observations in data, minority
records can be unfairly neglected. Even if the sensitive
feature is removed from the training data for a naive Bayes
classifier, the resultant CV score is 0.28, which still shows
an unfair treatment for minorities. This is caused by the
indirect influence of sensitive features. This event is called
by a red-lining effect [2], a term that originates from the
historical practice of drawing red lines on a map around
neighborhoods in which large numbers of minorities are
known to dwell. Consequently, simply removing sensitive
features is insufficient, and affirmative actions have to be
adopted to correct the unfairness in machine learning.

B. Three Causes of Unfairness

In this section, we discuss the social fairness in data
analysis. Previous works [1], [2] have focused on unfairness
in the resultant determinations. To look more carefully
at the problem of fairness in machine learning, we shall
examine the underlying causes or sources of unfairness.
We suppose that there are at least three possible causes:



prejudice, underestimation, and negative legacy. Note that
these are not mutually exclusive, and two or more causes
may compositely lead to unfair treatments.

Before presenting these three causes of unfairness, we
must introduce several notations. Here, we discuss super-
vised learning, such as classification and regression, which
is aware of unfairness. Y is a target random variable to
be predicted based on the instance values of features. The
sensitive variable, S, and non-sensitive variable, X, corre-
spond to sensitive and non-sensitive features, respectively.
We further introduce a prediction model M[Y'| X, S], which
models a conditional distribution of Y given X and S. With
this model and a true distribution over X and S, Pr*[X, 5],
we define

Pr[Y, X, §] = M[Y|X, S|Pr*[X, S]. (1)

Applying marginalization and/or Bayes’ rule to this equa-
tion, we can calculate other distributions, such as Pr[Y, S]
or Pr[Y|X]. We use Pr[] to denote sample distributions.
Pr[Y, X, S] is defined by replacing a true distribution in (1)
with its corresponding sample distribution:

Pr[Y, X, 8] = M[Y|X, S]Pr[X, 5], 2)

and induced distributions from Pr[Y, X, S] are denoted by
using Pr[].

1) Prejudice: Prejudice means a statistical dependence
between a sensitive variable, S, and the target variable, Y,
or a non-sensitive variable, X. There are three types of
prejudices: direct prejudice, indirect prejudice, and latent
prejudice.

The first type is direct prejudice, which is the use of a
sensitive variable in a prediction model. If a model with a
direct prejudice is used in classification, the classification
results clearly depend on sensitive features, thereby gen-
erating a database containing direct discrimination [1]. To
remove this type of prejudice, all that we have to do is
simply eliminate the sensitive variable from the prediction
model. We then show a relation between such this direct
prejudice and statistical dependence. After eliminating the
sensitive variable, equation (1) can be rewritten as

Pr[Y, X, S] = M[Y|X]Pr*[S| X]Pr*[X].

This equation states that S and Y are conditionally inde-
pendent given X, i.e., Y 1L S | X. Hence, we can say that
when the condition Y J{ S | X is not satisfied, the prediction
model has a direct prejudice.

The second type is an indirect prejudice, which is statis-
tical dependence between a sensitive variable and a target
variable. Even if a prediction model lacks a direct prejudice,
the model can have an indirect prejudice and can make an
unfair determination. We give a simple example. Consider
the case that all Y, X, and S are real scalar variables, and
these variables satisfy the equations:

Y=X+4+ey and S=X+e¢g,
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where ey and &g are mutually independent
random variables. Because Pr[Y,X,S] is equal to
Pr[Y|X] Pr[S|X] Pr[X], these variables satisfy the

condition Y 1l S | X, but do not satisfy the condition
Y ILS. Hence, the adopted prediction model does not have
a direct prejudice, but may have an indirect prejudice. If
the variances of €y and g are small, Y and S become
highly correlated. In this case, even if a model does not
have a direct prejudice, the determination clearly depends
on sensitive information. Such resultant determinations
are called indirect discrimination [1] or a red-lining effect
[2] as described in section II-A. To remove this indirect
prejudice, we must use a prediction model that satisfies the
condition Y 1L S.

We next show an index to quantify the degree of indirect
prejudice, which is straightforwardly defined as the mutual
information between Y and S. However, because a true
distribution in (1) is unknown, we adopt sample distributions
in equation (2) over a given sample set, D:

Prly, s]
Pr , —_—.
= 2 Pl

(y,8)€D

3

We refer to this index as a (indirect) prejudice index (PI for
short). For convenience, the application of the normalization
technique for mutual information [3] leads to a normalized
prejudice index (NPI for short):

NPI = P1/(/H(V)H(S)), 4
where an entropy function H(X) is defined as
— > zep Pr[z]InPriz]. The range of this NPI is [0, 1].

The third type of prejudice is latent prejudice, which is a
statistical dependence between a sensitive variable, S, and a
non-sensitive variable, X. Consider an example that satisfies
the equations:

Y=Xi+ey, X=X1+Xy, and 5=X5+e¢g,

where ey leg and X;1 Xs5. Clearly, the conditions
Y 1L S| X and YIS are satisfied, but X and S are
not mutually independent. This dependence doesn’t cause a
sensitive information to influence the final determination, but
it would be exploited for training learners; thus, this might
violate some regulations or laws. Recall our example about
personal information in section I. The use of raw purchasing
logs may violate contracts with customers, because the
logs are influenced by recommendations based on personal
information, even if it is irrelevant to the final selection
of customers. Removal of potential prejudice is achieved
by making X and Y independent from S simultaneously.
Similar to a PI, the degree of a latent prejudice can be
quantified by the mutual information between X and S.

2) Underestimation: Underestimation is the state in
which a learned model is not fully converged due to the
finiteness of the size of a training data set. Given a learning



algorithm that can acquire a prediction model without indi-
rect prejudice, it will make a fair determination if infinite
training examples are available. However, if the size of the
training data set is finite, the learned classifier may lead to
more unfair determinations than that observed in the training
sample distribution. Though such determinations are not
intentional, they might awake suspicions of unfair treatment.
In other words, though the notion of convergence at infinity
is appropriate in a mathematical sense, it might not be in a
social sense. We can quantify the degree of underestimation
by assessing the resultant difference between the training
sample distribution over D, F;rH, and the distribution in-
duced by a model, Isr[] Along this line, we define the
underestimation index (UEI) using the Hellinger distance:

(\/Pr ly, s \/P;r[y7s])2)1/2

1/2
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UEI = (
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Note that we did not adopt the KL-divergence because it can
be infinite and this property is inconvenient for an index.

3) Negative Legacy: Negative legacy is unfair sampling
or labeling in the training data. For example, if a bank has
been refusing credit to minority people without assessing
them, the records of minority people are less sampled in
a training data set. A sample selection bias is caused by
such biased sampling depending on the features of samples.
It is known that the problem of a sample selection bias
can be avoided by adopting specific types of classification
algorithms [4]. However, it is not easy to detect the existence
of a sample selection bias only by observing training data.
On the other hand, if a bank has been unfairly rejecting
the loans of the people who should have been approved,
the labels in the training data would become unfair. This
problem is serious because it is hard to detect and correct.
However, if other information, e.g., a small-sized fairly
labeled data set, can be exploited, this problem can be
corrected by techniques such as transfer learning [5].

Regulations or laws that demand the removal of potential
prejudices are rare. We investigate UEIs in the experimental
sections of this paper, but we don’t especially focus on
underestimation. As described above, avoiding a negative
legacy can be difficult if no additional information is avail-
able. We therefore focus on the development of a method to
remove indirect prejudice.

III. PREJUDICE REMOVAL TECHNIQUES

We here propose a technique to reduce indirect prejudice.
Because this technique is implemented as a regularizer,
which we call a prejudice remover, it can be applied to
wide variety of prediction algorithms with probabilistic
discriminative models.
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A. General Framework

We focused on classification and built our regularizers
into logistic regression models. Y, X, and S are random
variables corresponding to a class, non-sensitive features,
and a sensitive feature, respectively. A training data set
consists of the instances of these random variables, i.e.,
D {(y,x,s)}. The conditional probability of a class
given non-sensitive and sensitive features is modeled by
M[Y|X,S;©], where © is the set of model parameters.
These parameters are estimated based on the maximum
likelihood principle; that is, the parameters are tuned so as
to maximize the log-likelihood:

(D;@) = Y

(yi,%i,8:)€ED

In My;[x;, si; ©]. (6)

We adopted two types of regularizers. The first regular-
izer is a standard one to avoid over-fitting. We used an
Ly regularizer ||©||3. The second regularizer, R(D, ®), is
introduced to enforce fair classification. We designed this
regularizer to be easy to implement and to require only
modest computational resources. By adding these two regu-
larizers to equation (6), the objective function to minimize
is obtained:

A
~{(D;©) +1R(D,©) + Z|®3, )

where A\ and n are positive regularization parameters.

We dealt with a classification problem in which the target
value Y is binary {0,1}, X takes a real vectors, x, and S
takes a discrete value, s, in a domain S. We used a logistic
regression model as a prediction model:

Mylx, 58] = yo(x'w,) + (1 —y)(1 —o(x"wy)), (8)

where o(-) is a sigmoid function, and the parameters are
weight vectors for x, ® = {w,}scs. Note that a constant
term is included in x without loss of generality. We next
introduce a regularizer to reduce the indirect prejudice.

B. Prejudice Remover

A prejudice remover regularizer directly tries to reduce
the prejudice index and is denoted by Rpr. Recall that the
prejudice index is defined as

. Pr[Y, S]
PI= Y Pr[¥,5]ln -
; r[S]Pr[Y]
B . ©1Pr 0 lﬁr[Y, S]
= ) M[Y|X,S;O]Pr[X, S]] ERETL

Y, X,S

>xsP >r[X, S] can be replaced with 2 (x;,s;,)ep> and the

argument of logarithm can be rewritten as Pr[Y|s;]/Pr[Y],
by reducing Pr[S]. We obtain

Z Z M{y|x;, s;; O] In lﬁrA[y|3i].

(x4,8:)€D ye{0,1} Pr[y]



The straightforward way to compute Pr[y|s] is to marginal-
ize M[y|X, s; ©]Pr[X, s] over X. However, if the domain
of X is large, this marginalization is computationally heavy.
We hence take a drastically simple approach. We replace
X with Z4, which is a sample mean vector of x over a set
of training samples whose corresponding sensitive feature is
equal to s, {(yi,%i, ;) € Ds.t. s; = s}, and we get

HH] Mly|xs, 5: O], ©)
Prly] =Y Prls|M(y[x,, s; ©). (10
seS
Finally, the prejudice remover regularizer Rpr(D, ©) is
Prlyls;
SN Miylxi, 5] m Dl

Prly]

where Pr[y|s] and Pr[y] are equations (9) and (10), respec-
tively. This regularizer becomes large when a class is de-
termined mainly based on sensitive features; thus, sensitive
features become less influential to the final determination.
In the case of logistic regression, the objective function (7)
to minimize is rewritten as

(xi,8,)€D ye{0,1}

> In Mly;[x;, 5; ©]+Rer(D, ©) +

(yi,%i,54)

where MJy|x,s; O] is equation (8) and Rpr(D,®) is
equation (11). In our experiment, this objective function is
minimized by a conjugate gradient method starting from the
initial condition w, = 0, Vs € S, and we obtain an optimal
parameter set, {w?}.

The probability of Y = 1 given a sample without a class
label, (Xpew, Snew) can be predicted by

Eﬂmh(m

SES

Pr[Y=1|Xnew, Snew; {Wi}] = O’(XT wi o).

Nnew "' Snew
IV. EXPERIMENTS

We compared our method with Calders and Verwer’s
method on the real data set used in a previous study [2].

A. Calders-Verwer’s 2-Naive-Bayes

We briefly introduce Calders and Verwer’s 2-naive-Bayes
method (CV2NB), which was found to be the best method
in the previous study using the same dataset [2]. This
method targets a binary classification problem. The number
of sensitive features is one and the feature is binary. The
generative model of this method is

PrY, X, S] = MY, S| [[M[X,]Y,S].  (13)

M[X;|Y, S] models a conditional distribution of X; given
Y and S, and the parameters of these models are estimated
by the similar way in the estimation of parameters of a naive
Bayes model. M[Y, S| models a joint distribution Y and S.
Because Y and S are not mutually independent, the final

647

1 Calculate a CV score, disc, of the predicted classes by the current model.
2 while disc >0
3 numpos is the number of positive samples classified by the current model.
4 if numpos < the number of positive samples in D then
5 N(Y=1,5=0) — N(Y=1,5=0) + AN(Y=0, S=1)
6 N(Y=0,5=0) «— N(Y=0,5=0) - AN(Y=0,S=1)
7 else
8 N(Y=0,5=1) — N(Y=0,5=1) + AN(Y =1, 5=0)
9 N(Y=1,S=1) — N(Y=1,5=1) - AN(Y=1,5=0)
10 if any of N(Y,S) is negative then
cancel the previous update of N (Y, S) and abort

11 Recalculate Pr[Y|S] and a CV score, disc based on updated N (Y, S)

Figure 1. naive Bayes modification algorithm
NOTE: N (Y =y, S=s) denotes the number of samples in D,
whose class and sensitive feature are y and s, respectively. In
our experiment, A was set to 0.01 as in the original paper.

determination might be unfair. While each feature depends
only on a class in the case of the original naive Bayes, every
non-sensitive feature, X;, depends on both Y and S in the
case of CV2NB. 1t is as if two naive Bayes classifiers are
learned depending on each value of the sensitive feature;
that is why this method was named by the 2-naive-Bayes.
To make the classifier fair, MY, S] is initialized by the
sample distribution Pr[Y; S], and this model is modified by
the algorithms in Figure 1. A model parameter M/(y, s)
is derived by N(y,s)/> y ¢ N(y',s’). This algorithm is
designed so as to update Pr[Y, S] gradually until a CV score
becomes positive. Note that we slightly modified the original
algorithm by adding line 10 in Figure 1, which guarantees
the parameters, N(Y,.S), to be non-negative, because the
original algorithm may fail to stop.

B. Experimental Conditions

We summarize our experimental conditions. We tested a
previously used real data set [2], as shown in section II-A.
This set includes 16281 data in an adult.test file of the
Adult/Census Income distributed at the UCI Repository
[6]. The target variable indicates whether or not income is
larger than SOM dollars, and the sensitive feature is gender.
Thirteen non-sensitive features were discretized by the pro-
cedure in the original paper. In the case of the naive Bayes,
parameters of models, M[X;|Y, S], are estimated by a MAP
estimator with multinomial distribution and Dirichlet priors.
In the case of our logistic regression, discrete variables are
represented by 0/1 dummy variables coded by a so-called
1-of-K scheme. The regularization parameter for the Lo
regularizer, A, is fixed to 1, because the performance of
pure logistic regression was less affected by this parameter in
our preliminary experiments. We tested six methods: logistic
regression with a sensitive feature (LR), logistic regression
without a sensitive feature (LRns), logistic regression with
a prejudice remover regularizer (PR), naive Bayes with
a sensitive feature (NB), naive Bayes without a sensitive
feature (NBns), and Caldars and Verwer’s 2-naive-Bayes
(CV2NB). We show the means of the statistics obtained by
the five-fold cross-validation.



Table I
A SUMMARY OF EXPERIMENTAL RESULTS

method Acc NMI NPI UEI CVS PI/MI
LR 0.851 0.267 5.21E-02 0.040 0.189 2.10E-01
LRns 0.850 0.266 4.99E-04 0.036 -0.033 1.06E-03

PR n=0 0.850 0.265 4.94E-02 0.038 0.185 2.01E-01
PR n=0.1 0.850 0.264 4.11E-02 0.036 0.170 1.68E-01
PR n=0.3 0.774 0.149 7.53E-03 0.127 -0.095 5.47E-02
PR n=1 0.720 0.124 1.29E-05 0.148 -0.004 1.12E-04
PR n=10 0.676 0.013 2.13E-01 0.259 -0.472 1.84E+01

NB 0.822 0.246 1.12E-01 0.068 0.332 4.90E-01
NBns 0.826 0.249 7.17E-02 0.043 0.267 3.11E-01
CV2NB 0.813 0.191 3.64E-06 0.082 -0.002 2.05E-05

NOTE: (n1)E(nz) denotes n; x 10™2.

C. Experimental Results

Table I shows accuracies (Acc), NPI and UEI in section II,
and CV scores (CVS). MI denotes mutual information be-
tween sample labels and predicted labels, NMI was obtained
by normalizing this MI in a process similar to NPI. PI / MI
quantifies a prejudice index that is sacrificed by obtaining a
unit of information about the correct label. This can be used
to measure the efficiency of the trade-off between prediction
accuracy and prejudice removal. A smaller PI / MI value
indicates higher efficiency in this trade-off.

We first compare the performance of our method with that
of baselines in Table I. Compared with NBns, our method
was superior both in accuracy and NPI at n = 0.1. Because
LRns successfully removed prejudice without sacrificing
accuracy unlike NBns, our PR at = 1 was better in
PI / MI, but accuracy was fairly degraded. Note that two
methods, PR at n = 0 and LR, behaved similarly, because
our PR is almost equivalent to LR if the prejudice remover
is eliminated by setting 1 = 0.

We next moved on to the influence of the parameter, 7,
which controls the degree of prejudice removal. We expected
that the larger the 7, the more prejudice would be removed,
whereas accuracy might be sacrificed. According to Table I,
as 7 increased, our PR generally become degraded in accu-
racy, but was also not fully improved in prejudice removal.

To further investigate the change of performance depend-
ing on this parameter 7, we demonstrated the variations in
accuracy (Acc), normalized prejudice index (NPI), and the
trade-off efficiency between accuracy and prejudice removal
(PI/MI) in Figure 2. We focus on our PR method. Overall,
the changes were rather unstable in all statistics. The reasons
for this instability would be the sub-optimality in solutions
stemming from the lack of convexity of the objective func-
tion (12) and the approximation by replacing the marginal
values of X with their sample means. The increase of 7
generally damaged accuracy because a prejudice remover
regularizer is designed to remove prejudice by sacrificing
correctness in prediction. NPI peaked at n = 1, though
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(a) accuracy (Acc)
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(b) normalized prejudice index (NPI)

107°

S — — —— —— — e —— — -

(c) trade-off efficiency between accuracy and prejudice removal
(P1/ MI)

Figure 2. The change in performance according to the parameter n

NOTE: Horizontal axes represent the parameter 7, and vertical
axes represent statistics in each subtitle. Solid, chain, dotted,
and broken lines indicate the statistics of PR, CV2NB, LRns,
and NBns, respectively.



we expected that more prejudice would be removed as n
increased. We postulate that this would be due to the approx-
imation in the marginalization of X; further investigation is
required for this point. The peak in trade-off efficiency was
observed at 7 = 1, but accuracy was fairly damaged at this
point.

We next compared our PR with other methods. The
performance of CV2NB was fairly good, and our PR was
inferior except for accuracy at the lower range of 7. When
compared to the baseline LRns, by tuning the parameter 7,
our PR could exceed in all statistics. However, it failed to
exceed in both accuracy and prejudice removal at the same
7.

In summary, our PR could successfully reduce indirect
prejudice, but accuracy was sacrificed for this reduction. We
must further improve the efficiency in the trade-off between
accuracy and prejudice removal.

V. RELATED WORK

Several analytic techniques that are aware of fairness or
discrimination have recently received attention. Pedreschi
et al. emphasized the unfairness in association rules whose
consequents include serious determinations [1], [7]. They
advocated the notion of a--protection, which is the condition
that association rules were fair. Given a rule whose conse-
quent exhibited negative determination, it would be unfair if
the confidence of the rule substantially increased by adding a
condition related to a sensitive feature to the antecedent part
of the rule. The a-protection constrains the rule so that the
ratio of this increase is at most «. They also suggested the
notions of direct discrimination and indirect discrimination.
A direct discriminatory rule directly contains a sensitive
condition in its antecedent, and while an indirect discrimi-
natory rule doesn’t directly contain a sensitive condition, the
rule is considered to be unfair in the context of background
knowledge that includes sensitive information. Their work
has since been extended [8]. Various kinds of indexes for
evaluating discriminatory determinations were proposed and
their statistical significance has been discussed. A system for
finding such unfair rules has been proposed [9]. Calders and
Verwer proposed several methods to modify naive Bayes
for enhancing fairness as described in section IV-A [2].
Luong et al. proposed a notion of situation testing, wherein a
determination is considered unfair if different determinations
are made for two individuals all of whose features are equal
except for sensitive ones [10]. Such unfairness was detected
by comparing the determinations for records whose sensitive
features are different, but are neighbors in non-sensitive
feature space. If a target determination differs, but non-
sensitive features are completely equal, then a target variable
depends on a sensitive variable. Therefore, this situation
testing has connection to our indirect prejudice. Dwork et al.
argued a data transformation for the purpose of exporting
data while keeping aware of fairness [11]. A data set held
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by a data owner is transformed and passed to a vendor who
classifies the transformed data. The transformation preserves
the neighborhood relations of data and the equivalence
between the expectations of data mapped from sensitive
individuals and from non-sensitive ones. In a sense that
considering the neighborhood relations, this approach is
related to the above notion of situation testing. Because
their proposition 2.2 implies that the classification results
are roughly independent from the membership in a sensitive
group, their approach has relation to our idea of prejudice.

In a broad sense, fairness-aware learning is a kind of
cost-sensitive learning [12]. That is to say, the cost of
enhancing fairness is taken into account. Fairness in machine
learning can be interpreted as a sub-notion of legitimacy,
which means that models can be deployed in the real
world [13]. Gondek and Hofmann devised a method for
finding clusters that were not relevant to a given grouping
[14]. If a given grouping contains sensitive information, this
method can be used for clustering data into fair clusters.
Independent component analysis might be used to maintain
the independence between features [15].

The removal of prejudice is closely related to privacy-
preserving data mining [16], which is a technology for min-
ing useful information without exposing individual private
records. The privacy protection level is quantified by mutual
information between the public and private realms [17]. In
our case, the degree of indirect prejudice is quantified by mu-
tual information between classification results and sensitive
features. Due to the similarity of these two uses of mutual
information, the design goal of fairness-aware learning can
be considered the protection of sensitive information when
exposing classification results.

Regarding underestimation, the concepts of anytime algo-
rithms in planning or decision making [18] might be useful.

As described in section II-B, the problem of negative
legacy is closely related to transfer learning. Transfer learn-
ing is “the problem of retaining and applying the knowledge
learned in one or more tasks to efficiently develop an effec-
tive hypothesis for a new task™ [5]. Among many types of
transfer learning, the problem of a sample selection bias [4]
would be related to the negative legacy problem. Sample
selection bias means that the sampling is not at random, but
biased depending on some feature values of data. Another
related approach to transfer learning is weighting samples
according the degree of usefulness for the target task [19].
Using these approaches, if given a small amount of fairly
labeled data, other data sets that might be unfairly labeled
would be correctly processed.

VI. CONCLUSIONS AND FUTURE WORK

The contributions of this paper are as follows. First,
we proposed three causes of unfairness: prejudice, under-
estimation, and negative legacy. Prejudice refers to the
dependence between sensitive information and the other



information, either directly or indirectly. We further clas-
sified prejudice into three types and developed a way to
quantify them by mutual information. Underestimation is
the state in which a classifier has not yet converged, thereby
producing more unfair determinations than those observed
in a sample distribution. Negative legacy is the problem of
unfair sampling or labeling in the training data. Second,
we developed techniques to reduce indirect prejudice. We
proposed a prejudice remover regularizer, which enforces
a classifier’s independence from sensitive information. Our
methods can be applied to any algorithms with probabilistic
discriminative models and are simple to implement. Third,
we showed experimental results of logistic regressions with
our prejudice remover regularizer. The experimental results
showed the effectiveness and efficiency of our methods. We
further proposed a method to evaluate the trade-offs between
the prediction accuracy and fairness.

Research on fairness-aware learning is just beginning;
thus, there are many problems yet to be solved; for example,
the definition of fairness in data analysis, measures for
fairness, and maintaining other types of laws or regulations.
The types of analytic methods are severely limited at present.
Our method can be easily applied to regression, but fairness-
aware clustering and ranking methods are also needed.

The use of data mining technologies in our society
will only become greater with time. Unfortunately, their
results can occasionally damage people’s lives [20]. On the
other hand, data analysis is crucial for enhancing public
welfare. For example, exploiting personal information has
proved to be effective for reducing energy consumption,
improving the efficiency of traffic control, preventing in-
fectious diseases, and so on. Consequently, methods of
data exploitation that do not damage people’s lives, such
as fairness/discrimination-aware learning, privacy-preserving
data mining, or adversarial learning, together comprise the
notion of socially responsible mining, which it should be-
come an important concept in the near future.

ACKNOWLEDGMENT

We wish to thank Dr. Sicco Verwer for providing detail
information about his work. This work is supported by the
grants-in-aid 14658106, 16700157, and 21500154 of the
Japan society for the promotion of science.

REFERENCES

[1] D. Pedreschi, S. Ruggieri, and F. Turini, “Discrimination-
aware data mining,” in Proc. of The 14th Int’l Conf. on
Knowledge Discovery and Data Mining, 2008.

[2] T. Calders and S. Verwer, “Three naive bayes approaches for

discrimination-free classification,” Data Mining and Knowl-

edge Discovery, vol. 21, pp. 277-292, 2010.

[3] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge

reuse framework for combining multiple partitions,” Journal

of Machine Learning Research, vol. 3, pp. 583-617, 2002.

650

[4] B. Zadrozny, “Learning and evaluating classifiers under sam-
ple selection bias,” in Proc. of The 21st Int’l Conf. on Machine
Learning, 2004, pp. 903-910.

[5] “NIPS workshop — inductive transfer: 10 years later,” 2005,

http://Aitrl.acadiau.ca/itws05/.

[6] A. Frank and A. Asuncion, “UCI machine learning reposi-

tory,” University of California, Irvine, School of Information

and Computer Sciences, 2010, http://archive.ics.uci.edu/ml.

[7]1 S. Ruggieri, D. Pedreschi, and F. Turini, “Data mining for

discrimination discovery,” ACM Transactions on Knowledge

Discovery from Data, vol. 4, no. 2, 2010.

[8] D. Pedreschi, S. Ruggieri, and F. Turini, “Measuring discrim-

ination in socially-sensitive decision records,” in Proc. of the

SIAM Int’l Conf. on Data Mining, 2009, pp. 581-592.

[9] S. Ruggieri, D. Pedreschi, and F. Turini, “Dcube: Discrimina-

tion discovery in databases,” in Proc of The ACM SIGMOD

Int’l Conf. on Management of Data, 2010, pp. 1127-1130.

[10] B. T. Luong, S. Ruggieri, and F. Turini, “k-nn as an imple-

mentation of situation testing for discrimination discovery and

prevention,” in Proc. of The 17th Int’l Conf. on Knowledge

Discovery and Data Mining, 2011, pp. 502-510.

[11] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel,

“Fairness through awareness,” arxiv.org:1104.3913, 2011.

[12] C. Elkan, “The foundations of cost-sensitive learning,” in

Proc. of the 17th Int’l Joint Conf. on Artificial Intelligence,

2001, pp. 973-978.

[13] C. Perlich, S. Kaufman, and S. Rosset, “Leakage in data

mining: Formulation, detection, and avoidance,” in Proc. of

The 17th Int’l Conf. on Knowledge Discovery and Data

Mining, 2011, pp. 556-563.

[14] D. Gondek and T. Hofmann, “Non-redundant data clustering,”

in Proc. of The 4th IEEE Int’l Conf. on Data Mining, 2004,

pp. 75-82.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction. MIT Press, 1998.

[16] C. C. Aggarwal and P. S. Yu, Eds., Privacy-Preserving Data

Mining: Models and Algorithms. Springer, 2008.

[17] S. Venkatasubramanian, “Measures of anonimity,” in Privacy-

Preserving Data Mining: Models and Algorithms, C. C.

Aggarwal and P. S. Yu, Eds. Springer, 2008, ch. 4.

[18] S. Zilberstein, “Using anytime algorithms in intelligent sys-

tems,” Al Magazine, vol. 17, no. 3, pp. 73-86, 1996.

[19] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for

transfer learning,” in Proc. of The 24th Int’l Conf. on Machine

Learning, 2007, pp. 193-200.

[20] D. Boyd, “Privacy and publicity in the context of big data,”

in Keynote Talk of The 19th Int’l Conf. on World Wide Web,

2010.





