Future directions of Fairness-aware Data Mining
Recommendation, Causality, and Theoretical Aspects

Toshihiro Kamishima*1 and Kazuto Fukuchi*2
joint work with Shotaro Akaho*1, Hideki Asoh*1, and Jun Sakuma*2,3

*1National Institute of Advanced Industrial Science and Technology (AIST), Japan
*2University of Tsukuba, and *3JST CREST

Workshop on Fairness, Accountability, and Transparency in Machine Learning
In conjunction with the ICML 2015 @ Lille, France, Jul. 11, 2015

I’m Toshihiro Kamishima, and he is Kazuto Fukuchi.
This is joint work with Shotaro Akaho, Hideki Asoh, and Jun Sakuma.
Part of this slide is available at the Slideshare. Please check a Twitter timeline with #icml2015 hash tag.
In this talk, we try to provide foods for discussion about new directions of fairness in a data mining or a machine learning context. We show these three major topics: First, we explore applications of FADM techniques, other than anti-discrimination, especially in a recommendation context. Second, after reviewing relations of existing formal fairness with causal inference and information theory, we present new directions of fairness: Introducing an idea of a fair division problem and avoiding unfair treatments. Finally, Kazuto Fukuchi will talk about the learning theory, generalization bound in terms of fairness.
PART I
Applications of Fairness-Aware Data Mining

Let’s start Part 1: Applications of fairness-aware data mining.
We begin with what is fairness-aware data mining. FADM is data analysis taking into account potential issues of fairness. Here, we focus on a unfairness prevention task. A sensitive feature represents information that is wanted not to influence outcomes, such as socially sensitive information. The goal of this unfairness prevention task is to learn a statistical model from potentially unfair data sets so that the sensitive feature does not influence the model’s outcomes.
Advertisements indicating arrest records were more frequently displayed for names that are more popular among individuals of African descent than those of European descent.

Unfairness prevention methods have been mainly applied to obtain socially and legally anti-discriminative outcomes. This is Sweeney’s well-known case. We consider that unfairness prevention methods are useful for other types of applications; so, we will show these potential applications.
To fit for Pariser’s preference, conservative people are eliminated from his friend recommendation list in a social networking service. In this case, a political conviction of a friend candidate is specified as a sensitive feature. Then, a recommender will be able to provide unbiased information in terms of candidates’ political conviction.
The second application is to encourage fair trading by equal treatment of content providers. Consider an online retail store. The site owner directly sells items. Additionally, the site is rented to tenants, and the tenants also sells items. In the recommendation on the retail store, if the items sold by the site owner are constantly ranked higher than those sold by tenants, then tenants will complain about this unfair treatment. In this case, a content provider of a candidate item is specified as a sensitive feature. Then, site owner and its tenants can be equally treated in recommendation by using FADM techniques.
The third application is ignoring uninteresting information. This is an example of clustering facial images:

A simple clustering method finds two clusters: one contains only faces, and the other contains faces with shoulders.

A data analyst considers this clustering is useless and uninteresting.

By ignoring this uninteresting information, more meaningful female- and male-like clusters could be obtained.

In this case, uninteresting information is specified as a sensitive feature.

Ignoring the influence of uninteresting information is helpful for meaningful outcomes.
A belief introduction of FADM and a unfairness prevention task

- Learning a statistical model from potentially unfair data sets so that the sensitive feature does not influence the model’s outcomes

FADM techniques are widely applicable

- There are many FADM applications other than anti-discrimination, such as providing unbiased information, fair trading, and ignoring uninteresting information

Part 1: summary.
After a belief introduction of FADM and a unfairness prevention task, we explore FADM applications other than anti-discrimination: providing unbiased information, fair trading, and ignoring uninteresting information.
Let’s move on to Part 2: new directions of fairness.
In this part, we will discuss formal definitions and treatments of fairness in data mining or machine learning contexts. We will provide three topics: First, we review connection between formal fairness and causal inference, and then show their interpretation in view of information theory. Second, we discuss new direction of formal fairness Introducing an idea of a fair division problem. Third, we examine methods for avoiding unfair treatments instead of enhancing fairness.
A unfairness prevention task can be stated as an optimization problem of accuracy under causality constraints. We therefore explain connection between formal fairness and causal inference using an example of university admission in Žliobaitė’s paper.

If the gender does not influence the acceptance, the determination is considered as fair. Formally, this condition corresponds to statistical dependence between a sensitive feature and a target variable.
Information Theoretic Interpretation

Information theoretical view of a fairness condition

- **Sensitive:** S
- **Target:** Y

- $H(S | Y)$
- $I(S; Y)$
- $H(S)$
- $H(Y)$
- $H(Y | S)$

Statistical independence between S and Y implies zero mutual information: $I(S; Y) = 0$

The degree of influence S to Y can be measured by $I(S; Y)$

This Venn diagram shows information-theoretical view of a fairness condition. Because statistical independence between S and Y implies zero mutual information, the degree of influence S to Y can be measured by the area of this part; $I(S; Y)$. Among the total uncertainty about Y, this portion is influenced from S. To prevent unfairness, we have to reduce this area.
An example of fair determination even if \(S \) and \(Y \) are not independent.

Sensitive feature: \(S \)
- Gender: male / female

Target variable: \(Y \)
- Acceptance: accept / not accept

Explainable feature: \(E \)
- Program: medicine / computer

- Female \(\rightarrow \) medicine=high
- Male \(\rightarrow \) computer=high

- Medicine \(\rightarrow \) acceptance=low
- Computer \(\rightarrow \) acceptance=high

Removing the pure influence of \(S \) to \(Y \), excluding the effect of \(E \), the conditional statistical independence:

\[
Y \perp S \mid E
\]

This is an example of fair determination even if \(S \) and \(Y \) are not independent. The acceptance ratio of females is lower. However, the determination is still regarded as fair, if this is because females more frequently applied harder programs. Such a factor that influences both \(S \) and \(Y \) is called explainable feature in a FADM context and is called confounding feature in Rubin’s causal inference context. To remove pure influence of \(S \) to \(Y \), excluding the effect of \(E \), the conditional statistical independence between \(Y \) and \(S \) given \(E \) have to be satisfied.
Information Theoretic Interpretation

Again, this Venn diagram shows information-theoretical view of fairness condition. Because the degree of the independence between S and Y given E, can be measured by conditional mutual information between S and Y given E; \(I(S; Y | E) \).

To remove the pure influence of S to Y, we have to reduce this area. This means that we can exploit additional information \(I(S; Y; E) \) to obtain outcomes by adopting explainable features.
Why outcomes are assumed as being fair?

1. Why outcomes are assumed as being fair, if a sensitive feature does not influence the outcomes?
 - All parties agree with the use of this criterion, may be because this is objective and reasonable.

2. Is there any way for making an agreement?
 - In this view, [Brendt+ 12]’s approach is regarded as a way of making agreements in a wisdom-of-crowds way.
 - The size and color of circles indicate the size of samples and the risk of discrimination, respectively.

To further examine new directions, we introduce a fair division problem.
Alice and Bob want to divide this swiss-roll *FAIRLY*

Total length of this swiss-roll is 20cm

Alice and Bob get half each based on *agreed common measure*

This approach is adopted in current FADM techniques.

Some people in this room may say “this is a manifold,” but this is a swiss-roll cake. Alice and Bob want to divide this swiss-roll fairly. A simple method is like this: [PUSH] Total length of this swiss-roll is 20cm. [PUSH] Then, divide the swiss-roll into 10cm each. This procedure regarded as fair, because Alice and Bob get half each based on agreed common measure. This approach is adopted in current FADM techniques.
Alice and Bob want to divide this swiss-roll fairly. A simple method is like this: Total length of this swiss-roll is 20cm. Then, divide the swiss-roll into 10cm each. This procedure regarded as fair, because Alice and Bob get half each based on agreed common measure. This approach is adopted in current FADM techniques.
Unfortunately, Alice and Bob don’t have a scale. Don’t worry, they don’t need to fight.

First, Alice cut the swiss-roll exactly in halves based on her own feeling.

Then, Bob picks a larger piece based on his own feeling.

Alice believes that the sizes of two pieces are the same, and Bob believes that he gets the larger one. This condition is called envy-free division.
Unfortunately, Alice and Bob don’t have a scale.

Bob pick a larger piece based on his own feeling.

envy-free division: Alice and Bob get a equal or larger piece based on their own measure.

Unfortunately, Alice and Bob don’t have a scale. Don’t worry, they don’t need to fight.

1. First, Alice cut the swiss-roll exactly in halves based on her own feeling.
2. Then, Bob pick a larger piece based on his own feeling.

Alice believes that the sizes of two pieces are the same, and Bob believes that he get larger one. This condition is called by envy-free division.
Fair Division

- There are n parties
- Every party i has one’s own measure $m_i(P_j)$ for each piece P_j

Fairness in a fair division context

- **Envy-Free Division:** Every party gets a equal or larger piece than other parties’ pieces based on one’s own measure
 \[m_i(P_i) \geq m_i(P_j), \; \forall i, j \]

- **Proportional Division:** Every party gets an equal or larger piece than $1/n$ based on one’s own measure; Envy-free division is proportional division
 \[m_i(P_i) \geq 1/n, \; \forall i \]

- **Exact Division:** Every party gets a equal-sized piece
 \[m_i(P_j) = 1/n, \; \forall i, j \]

More formally, there are n parties, and every party has one’s own measure for each piece of a cake. The condition of envy-free division is stated that every party gets a equal or larger piece than other parties’ pieces based on one’s own measure. For a fair division problem, the other types of fairness conditions have been discussed, such as proportional division or exact division.
Envy-Free in a FADM Context

Current FADM techniques adopt common agreed measure

Can we develop FADM techniques using an envy-free approach?
This technique can be applicable without agreements on fairness criterion

FADM under envy-free fairness
Maximize the utility of analysis, such as prediction accuracy, under the envy-free fairness constraints

A Naïve method for Classification
- Among n candidates k ones can be classified as positive
- Among all $\binom{n}{k}$ classifications, **enumerate those satisfying envy-free conditions** based on parties’ own utility measures
 - ex. Fair classifiers with different sets of explainable features
- Pick the classification whose accuracy is maximum

Open Problem: Can we develop a more efficient algorithm?

Can we develop FADM techniques using an envy–free approach?
This technique is highly attractive, because it can applicable without agreements on fairness measures among parties.
If admissions are considered as pieces of cake, they are divided by concerned groups.
This is one possible formulation of FADM under envy–free fairness; Maximize the utility of analysis, such as prediction accuracy, under the envy–free fairness constraints.
A naïve method is an exhaustive search, like this; but, it is practically infeasible.
We leave as an open problem: Can we develop a more efficient algorithm?
Current fairness prevention methods are designed so as to be fair.

Example: Logistic Regression + Prejudice Remover [Kamishima+ 12]

The objective function is composed of classification loss and fairness constraint terms:

\[- \sum_{D} \ln \Pr[Y \mid X, S; \Theta] + \frac{\lambda}{2} \| \Theta \|_2^2 + \eta I(Y; S)\]

Fairness Guardian Approach

Unfairness is prevented by enhancing fairness of outcomes.

We have discussed new directions of fairness criteria. We then examine how to treat fairness. Current fairness prevention methods are designed so as to be fair. This is an example of our logistic regression with a prejudice remover regularizer. The objective function is composed of classification loss and fairness constraint terms. Here, we call this approach by a fairness guardian. Unfairness is prevented by enhancing fairness of outcomes.
A reverse treatment of fairness:

not to be unfair

One possible formulation of a unfair classifier

Outcomes are determined ONLY by a sensitive feature

\[
\Pr[Y \mid S; \Psi^*]
\]

Ex. Your paper is rejected, just because you are not handsome

Penalty term to maximize the KL divergence between a pre-trained unfair classifier and a target classifier

\[
D_{KL}[\Pr[Y \mid S; \Psi^*] \parallel \Pr[Y \mid X, S; \Theta]]
\]

We here explore a reverse treatment of fairness: not to be unfair.
For this purpose, we built unfair classifier.
This would be one possible formulation of a unfair classifier
Outcomes are determined ONLY by a sensitive feature.
For example, your paper is rejected, just because you are not handsome.
To avoid this unfair classifier, we tested penalty term to maximize the KL divergence between a pre-trained unfair classifier and a target classifier.
Unfairness Hater

Unfairness Hater Approach
Unfairness is prevented by avoiding unfair outcomes

This approach was almost useless for obtaining fair outcomes, but...

- **Better Optimization**
 The fairness-enhanced objective function tends to be non-convex; thus, adding a unfairness hater may help for avoiding local minima

- **Avoiding Unfair Situation**
 There would be unfair situations that should be avoided;
 Ex. Humans’ photos were mistakenly labeled as gorilla in auto-tagging [Barr 2015]

There would be many choices between to be fair and not to be unfair that should be examined

We call this approach by a unfairness hater.
Unfortunately, this approach was almost useless for obtaining fair outcomes.
However, this approach may be useful for these situations:
First, better optimization: The fairness-enhanced objective function tends to be non-convex; thus, adding a unfairness hater may help for avoiding local minima.
Second, There would be unfair situations that should be avoided; For example, humans’ photos were mistakenly labeled as gorilla in auto-tagging.
There would be many choices between to be fair and not to be unfair that should be examined.
Relation of fairness with causal inference and information theory

- We review a current formal definition of fairness by relating it with Rubin’s causal inference; and, its interpretation based on information theory.

New Directions of formal fairness without agreements

- We showed the possibility of formal fairness that does not presume a common criterion agreed between concerned parties.

New Directions of treatment of fairness by avoiding unfairness

- We discussed that FADM techniques for avoiding unfairness, instead of enhancing fairness.
Part 3: Generalization bound in terms of fairness.
There are many technical problems to solve in a FADM literature, because tools for excluding specific information has not been developed actively.

- **Types of Sensitive Features**
 - Non-binary sensitive feature

- **Analysis Techniques**
 - Analysis methods other than classification or regression

- **Optimization**
 - Constraint terms make objective functions non-convex

- **Fairness measure**
 - Interpretable to humans and having convenient properties

- **Learning Theory**
 - Generalization ability in terms of fairness

Among these problems, Kazuto Fukuchi will talk about generalization ability in terms of fairness.
Kazuto Fukuchi’s Talk
Conclusion

Applications of Fairness-Aware Data Mining

- Applications other than anti-discrimination: providing unbiased information, fair trading, and excluding unwanted information

New Directions of Fairness

- Relation of fairness with causal inference and information theory
- Formal fairness introducing an idea of a fair division problem
- Avoiding unfair treatment, instead of enhancing fairness

Generalization bound in terms of fairness

- Generalization bound in terms of fairness based on f-divergence

Additional Information and codes
http://www.kamishima.net/fadm

Acknowledgments: This work is supported by MEXT/JSPS KAKENHI Grant Number 24500194, 24680015, 25540094, 25540094, and 15K00327

This is a summary of our talk. That’s all I have to say. Thank you for your attention.
A. Barr.
Google mistakenly tags black people as ‘gorillas,’ showing limits of algorithms.
⟨http://on.wsj.com/1CaCNlb⟩.

B. Berendt and S. Preibusch.
Exploring discrimination: A user-centric evaluation of discrimination-aware data mining.

Controlling attribute effect in linear regression.

T. Calders and S. Verwer.
Three naive Bayes approaches for discrimination-free classification.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel.
Fairness through awareness.
K. Fukuchi and J. Sakuma.
Fairness-aware learning with restriction of universal dependency using f-divergences.

D. Gondek and T. Hofmann.
Non-redundant data clustering.
In Proc. of the 4th IEEE Int'l Conf. on Data Mining, pages 75–82, 2004.

Considerations on fairness-aware data mining.

Enhancement of the neutrality in recommendation.

Fairness-aware classifier with prejudice remover regularizer.
Efficiency improvement of neutrality-enhanced recommendation.

E. Pariser.
The filter bubble.
⟨http://www.thefilterbubble.com/⟩.

E. Pariser.
The Filter Bubble: What The Internet Is Hiding From You.
Viking, 2011.

A. Romei and S. Ruggieri.
A multidisciplinary survey on discrimination analysis.

L. Sweeney.
Discrimination in online ad delivery.

I. Žliobaitė, F. Kamiran, and T. Calders.
Handling conditional discrimination.
In *Proc. of the 11th IEEE Int’l Conf. on Data Mining*, 2011.
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork.
Learning fair representations.