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Abstract

Learning from cluster examples (LCE) is a hybrid task combining features of two com-

mon classification tasks: clustering and learning from examples. In LCE, each example

is an object set with the true partition for the set, where the true partition is the one that

users consider as the most appropriate for their aim among the possible partitions. The

task is then to acquire a rule for partitioning unseen object sets from this example set. A

method for learning such partitioning rules is useful in any situation where explicit al-

gorithms for deriving partitions are hard to formalize, but where individual examples of

true partitions are easy to specify. Clustering techniques have been of necessity applied

to such situations, despite being essentially unsuited to the problems. We point out faults

in using clustering techniques under such a situation, and explain why the techniques for

LCE task expected to be overcome these faults. We then present a solution technique for

LCE task, and apply the method to the problems in two domains; one with dot patterns

and the other with more realistic vector-data images.

i



ii



Contents

1 Introduction 1

2 An Overview of Learning from Cluster Examples 3

2.1 Why LCE Is Important . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Formalization of Learning from Cluster Examples 13

3.1 Notes on The Formalization of LCE . . . . . . . . . . . . . . . . . . . . 16

4 The Partitioning Method 21

4.1 How To Maximize The Probability:Pr [π=π∗; {A(o)} , {A(p)}] . . . . . 25

5 The Learning Methods 33

5.1 Acquisition of The Function:f1(p) . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Our Algorithm to Estimate The Function:f1(p) . . . . . . . . . . 35

5.2 Acquisition of The Function:f2(A(π)) . . . . . . . . . . . . . . . . . . . 40

6 Experimental Domains and Testing Methods 47

6.1 Experimental Domains: Dot Patterns . . . . . . . . . . . . . . . . . . . . 47

iii



iv CONTENTS

6.1.1 Attributes for Dot Patterns . . . . . . . . . . . . . . . . . . . . . 51

6.2 Experimental Domains: Vector-data Images . . . . . . . . . . . . . . . . 55

6.2.1 Attributes for Vector-Data Images . . . . . . . . . . . . . . . . . 58

6.3 A Testing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Experimental Results and Discussions 65

7.1 Testing Using Dot Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Testing Using Vector-data Images . . . . . . . . . . . . . . . . . . . . . 81

7.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Conclusions 89

A The Description Length for the Decision Lists and Example Sets 91



Chapter 1

Introduction

Clustering is a typical task that involves partitioning a given object set into subsets whose

constituents are mutually similar. Since clustering is carried out based on rules or criteria

given in advance, it can be regarded asdeductivetechnique for partitioning.

In this paper, we advocate the use of aninductivetechnique for partitioning. In other

words, we try to acquire a partitioning rule from an example set consisting of pairs of

an object set and the true partition for the object set, where the true partition is the one

that users consider as the most appropriate for their aim among the possible partitions.

The acquired rule can then be used for finding the true partitions for unseen object sets

(not appearing in the example set). Our induction task is similar to that of learning from

examples, that acquires a rule for classification from a given example set, except that an

aim of our task is to acquire a rule not for classification but for partitioning. Since our

learning task also deal with partitioning like a clustering task, we give our new task the
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2 CHAPTER 1. INTRODUCTION

composite namelearning from cluster examples, or LCE.

A solution technique for LCE will be useful for any problem where users can easily

identify which partition is the true partition for a given object set, but cannot specify

explicit rules for deriving these partitions. No technique that has been developed for this

aim. To fill the void, clustering techniques have been of necessity used, but they are

not particularly suited to such kinds of partitioning. In this paper, we point out several

faults caused by applying clustering techniques to such problems, and explain how our

techniques are expected to overcome these faults.

We experimentally apply our technique to the problems for partitioning two types

of data. We apply the method to the problems in two domains; one with dot patterns

and the other with more realistic vector-data images. Since there are no other algorithms

designed specifically for the tasks we consider, we cannot show direct comparison results.

Therefore we pay particular attention to confirming whether our LCE algorithm has ability

to acquire useful rules, and to analyzing the behavior of our method.

We proceed as follows. In Chapter 2, we show the importance of the LCE task. In

Chapter 3, we formalize the problem. In Chapter 4 and 5, we then present partitioning

and learning methods respectively. In Chapter 6, we explain experimental domains and

a testing method. In Chapter 7, we show results and discuss them. Finally, Chapter 8

summarizes our conclusions.



Chapter 2

An Overview of Learning from Cluster

Examples

In this chapter, we first present an overview of the LCE task, and then explain importance

of the LCE task.

LCE is a composite task combining features from the techniques of clustering and of

learning from examples. To give an overview of LCE, we therefore begin by reviewing

these existing tasks.

Learning from examples is a task involving the acquisition of a rule for classification

from a given example set. Each example is a pair of an object and a class to which the

object should belong. The acquired rule is used to classify an unseen object into a proper

class. The typical technique for this task in the machine learning field is ID3 [20] or feed-

forward neural networks [2], and the task is often called discriminant analysis or pattern
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4 CHAPTER 2. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

recognition.

Clustering, on the other hand, is a task that partitions a given object set into clusters

that have the properties of internal cohesion and external isolation [7]. The minimum

distance or thek-means is a typical clustering method in the numerical taxonomy litera-

ture. In the machine learning literature, the task is often calledlearning by observationor

unsupervised learning. COBWEB [8] and AutoClass [5] are typical examples of such a

learning algorithm.

We have been developing “learning from cluster examples” techniques [12] as an

extension of these two known approaches. The aim is not to find a rule to classify single

objects, or a particular clustering, but to find a rule for partitioning, based on a given

example set. Each example is a pair of an object set and an instance of the true partition

for the object set. Note that, the true partition is the one that users consider as the most

appropriate for their aim or intention. The acquired rule produced by learning from this

example set is used to derive the true partition for an unseen object set. So, in contrast to

learning from examples, LCE involves the acquisition of a rule not for classification but

for partitioning an object set. And whereas the aim of clustering is to partition an object

set based on rules or criteria given in advance, the aim of LCE is acquiring partitioning

rule, that can be applied to any object set from the same domain. In short, LCE takes the

inductive nature of learning from examples, and brings it to the task of clustering.
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2.1 Why LCE Is Important

We will now describe some example cases which fit for the LCE task. Typically, these

will be cases where an true partition for any object set is easy for a user to specify or

identify, but where an overall set of rules for finding these partitions is very hard for a

user to specify concretely and explicitly. A prime example of such a problem is image

segmentation. Suetens et al [27] quoted Kanade’s view of the segmentation problem, that

is to obtain a segmentation which separates out semantically meaningful objects or parts

of objects.

To explain the image segmentation task, we give an example of a typical problem

involving the understanding of diagrammatic images. Figure 2.1(a) shows an image of

a logic circuit diagram. Understanding this image is to obtain a proper description of

the form of its logic circuit. In this case, a proper description for the image would be

the logic function “a · b + c̄.” In a typical diagram image understanding process, the

given image is first of all partitioned, so that each cluster depicts an individual primitive

symbol. This partitioning operation is generally calledsegmentationin the machine vision

literature and is a very common technique. An appropriate treatment of the image in

Figure 2.1(a), for example, would be to partition it into clusters with each depicting one

part of a logic circuit diagram. Such a partition is illustrated in Figure 2.1(b), where the

the original image has been separated with thin broken lines. After segmentation, each

cluster is mapped to its proper primitive symbol. From the set of mapped symbols, an

image description can then be inferred.
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(a) An Original Image

(b) A Partitioned Image

Figure 2.1: Examples of diagram images
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Segmentation is needed in many types of image understanding processes. As in the

example we gave above, it typically corresponds to the task of finding partitions that

satisfy the users’ aims in situations where the users themselves cannot specify general

rules for deriving partitions. Although segmentation problems are frequently encountered,

we don’t know methods that squarely grapples with the problem. Image segmentation

techniques, for example, are usually designed in a non-systematic manner, relying on the

designers’ experience and intuition. Though such a design approach has been used from

the beginning of machine vision research, the resulting programs are usually restricted to

processing images in limited domains. We can pinpoint a number of drawbacks that arise

from this absence of a systematic approach:

• Segmentation methods commonly rely on the designers’ intuition. An example

of a successful image understanding process is OCR (Optical Character Reader)

systems. These systems are capable of recognizing regions where characters are

written in a given document image. For this specific purpose, the powerful segmen-

tation technique XY-Tree [9] was developed. This exploits a very specific feature

of document image analysis: there are always gaps between lines or between char-

acters. Another example of structure in a domain is RoboCup [14], in which soccer

games are played by AI-controlled robots. These robots have to use machine vision

to understand the game, but structure is artificially introduced by using distinct col-

ors to identify objects. For example, the ball is orange and the goals are either blue

or yellow. These coloring regulations are a significant aid that the robots attempts
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to locate objects.

In cases like these two examples, human designers can state rules describing how

images should be partitioned by using image features. In practice, character regions

can be extracted by finding gaps between lines or characters in document images,

and robots can almost always detect a ball by locating an orange region in the

camera image. However, this kind of feature is not common. For example, Minoh

et al have worked on the segmentation of line-drawing images, in which structure

is hard to find [17]. This work succeeded in extracting symbol candidates from

line-drawing images by defining a set of complicated rules for the extraction of

symbols in terms of groups of short line-segments surrounded by a loop. This rule

was intuitively derived based on a great deal of knowledge regarding the domain of

line-drawing images, properties of image processing and cognitive science. In order

to find suitable rules in domains where there is no obvious and constant features,

the designers have nothing but to rely on intuition in addition to very much effort

and knowledge.

• Some features are hard to formalize in pragmatic domains. The features, adopted

in the above successful domains, are usually obvious, and is relatively easy to be

represented by formal rules. We call such types of featurestypical features. How-

ever, there exists unexpected and ambiguous features that have to be taken into

account for segmentation. We call themexceptional features. We give an example

of exceptional features in the above Minoh’s work. It is a very frequent event that
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a surrounding loop happens to be cut, and extraction of symbols will be failed by

this event. Such events can be often caused, for example, by stains on an original

diagram, quantization errors in scanning, or the effects of image processing. The

designers therefore have to take into account these events, but it is not easy to iden-

tify the features that how and where these events will occur. Such features are just

what we call exceptional features. (In Section 6.2, we give some practical examples

of such features). In a pragmatic domain, even though designers notice that these

events will occur and try to formalize the features of the events, it is difficult to

formalize such features as concrete rules by hand.

• Segmentation rules require user tuning. The designers of a system will create rules

that express the typical features of the input, but these features will almost always

allow for some variation. Since the nature of these variations are too difficult to cap-

ture intuitively, designers usually have no choice but to leave adjustable elements in

segmentation rules. When applying a segmentation rule to a new image, experience

and knowledge of machine vision is required for the users of the rules. For example,

Minoh’s work on image segmentation requests users to specify a threshold value to

judge the shortness of the line-segments. Thus users without experience of machine

vision techniques will not able to apply these rules.

• Segmentation results are statistically instable. We will show two reasons for this.

Firstly, it is difficult to enforce a strict distinction between training and testing ex-

amples, because partitioning rules are typically created by hand. The designers
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will naturally seek to find the best segmentation rules by referring to not only their

knowledges of domain but also to available images. Thus, if the human designers

just glancing the test images, they unwillingly gain some information from these

images. Thus, since it is not avoidable to essentially distinct testing and training

images, the performance for unseen images will not be objectively and rigorously

evaluated. This facts weaken statistical stability of results derived by acquired rules

by hand.

Secondly, an amount of information used for generating partitioning rules is re-

stricted. Even though thousands or millions of images are available, the designers

can merely deal with restricted amount of information due to the limitation of hu-

man cognitive ability. This fact also lead to statistical instability.

Other drawbacks have also been noted by Pavlidis, who pointed out the difficulties

in finding partitioning when using several kinds of image features [19]. We believe that

the only way to counter all these drawbacks is abandoning the non-systematic design

approach in favor of a more powerful general method. Our choice for this method is a

design approach based on LCE.

LCE expected to overcome the above drawbacks of existing approaches as follows:

• With LCE the designers only have to provideinstancesof partitions; it is not re-

quired to explicitly identify features important for segmentation by depending on

their intuition.
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• A learning algorithm can acquire rules that fully represent the domain. By anal-

ogy with learning algorithms for the object classification task, we can also see that

LCE should handle exceptional features. In object classification, attribute values

assigned to objects are often changed by accident, yet algorithm for learning from

examples can still acquire successful classification rules. We are confident that a

similar approach (that is, acquiring a rule with stochastic techniques from an exam-

ple set) will also be effective for acquiring rules for partitioning.

• Just as object classification algorithms can generate rules that can cope with vari-

ance in the input, LCE can generate segmentation rules that users will not need

to tune, and thus knowledge of machine learning or of the domain is not required

when applying rules.

• Finally, since the learning algorithms explicitly require a set of training examples

and can be effectively isolated from exposure to the testing examples, performance

can be fairly evaluated. Since segmentation rules are acquired not by hand but by

statistical algorithms, an amount of information gained from a given examples are

not restricted by human cognitive ability any longer. These two property enhance

statistical stability.

The development of successful techniques for learning from cluster examples will

contribute to the progress of research in any field involving the mapping of raw sensor

signals to abstract notions of objects. We have discussed a number of example domains
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already, and the technique may also be applicable to problems such as multistrategy learn-

ing [16], the data mining [1] and the identification of genes in DNAs [4]. The rest of this

paper will therefore rise to this challenge by presenting our algorithm for LCE.



Chapter 3

Formalization of Learning from Cluster

Examples

This chapter formally states the task of learning from cluster examples. This task can

be visualized as in Figure 3.1 and consists of two major stages: a learning stage and

a partitioning stage. In the learning stage (Figure 3.1, left), the rule for carrying out

partitioning is acquired from an example set. The example set,EX, includes#EX

elements,{(O1 , π∗1) , (O2 , π∗2) , . . . , (O#EX , π∗#EX)}, whereOI is an object set andπ∗I

is an instance of its true partition. The object setO includes#O elements,{o1 , o2 , . . . ,

o#O}. The clusterCJ is a subset ofO, and the partition is a set of these clusters with#π

elements,{C1 , C2 , . . . , C#π}, such that the clusters are disjointed and every object has

to be an element of exactly one of theCJ ’s. In the partitioning stage (Figure 3.1, right),

based on the acquired rule, the true partition of an unseen object set,OU , is estimated.
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Figure 3.1: An illustration of learning from cluster examples
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Because many of the algorithms used in techniques for learning from examples adopt

attribute vectors to represent the individual objects, we also adopt them to represent the

individual object set. We introduce the following three types of attributes assigned to

different parts of the object set.

Attributes of Objects This type of attribute is assigned to constituent objects. For ex-

ample, the positions of objects can be represented. We denote the attributes of the

objecto by A(o). A(o) is a vector with#A(o) values,(a1(o),a2(o), . . . ,a#A(o)(o)).

Attributes of Pairs This type of attribute is assigned to pairs of constituent objects. For

example, the distances between object pairs can be represented. Specifically, let a

pair of objectsoi andoj be denoted bypij, and letP be the set of all possible pairs

of objects. Thus,P has#O(#O + 1)/2 elements, and this number is denoted by

#P . We denote the attributes of the object pairp by A(p). A(p) is a vector with

#A(p) values,(a1(p) , a2(p) , . . . , a#A(p)(p)).

Attributes of Partitions This type of attribute represents characteristics of entire parti-

tions. For example, the number of clusters can be represented. While values of the

above two types of attributes are rely on only an given object set, those of partitions

are not. Given a partition, values of attributes of partitions are calculated from val-

ues of the above two types of attributes and from a states of the partition. WhenO

is divided into a partition,π, we denote this type of attribute byA(π). A(π) is a

vector with#A(π) values,(a1(π) , a2(π) , . . . , a#A(π)(π)).
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To apply our learning algorithm, the domains of attributes of objects and of pairs

are either continuous numbers or discrete values (as in Quinlan’s ID3 [20]). Also, the

domains of attributes of partitions are real numbers from the interval[0 , 1].

3.1 Notes on The Formalization of LCE

We add here two notes relevant to the above formalization.

Firstly, though either attributes of objects or those of pairs are adopted to represent

object sets when applying traditional clustering techniques, we adopt both types of at-

tributes together in our formalization of the LCE task. Below we describe the reason why

both types of attributes are adopted.

It is helpful to sort out partitioning tasks before showing explanation of the above

reason. We suppose that the partitioning tasks can be classified into two categories, and

call each of theseclass findingandtrue clusteringrespectively.

In the case of the class finding task, objects are independently generated from a pop-

ulation according to an identical distribution, and these generated objects compose an

object set. In the population, there is a set of classes, and each object belongs to one of

the classes. One can observe object sets themselves, but cannot do classes of the con-

stituent objects. An aim of the task is to partition a given object set into clusters, each

of which consists of objects belonging to the same unobserved class. For finding the true

partition, it is therefore enough to investigate relations between features of each object

and class properties. On the other hand, in the case of true clustering task, object sets are



3.1. NOTES ON THE FORMALIZATION OF LCE 17

generated as a group. Constituent objects are not independent any longer, and the true

partition is determined based on properties of entire the object set. Therefore, to derive

the true partition, mutual influences among the objects have to be taken into account.

The following phenomenon clarify the difference between these two types of tasks.

Figure 3.2(a) shows an object setO1 that is generated from a population (objects are

represented by circles). The true partition for the set consists of two clusters,C1 and

C2, each of which is depicted by a surrounding broken line. Objects,o1 ando2, belong

to clusters,C1 and C2, respectively. Consider then another object set,O2 (shown in

Figure 3.2(b)), that is identical except for the object,o9. The object set is also generated

from the same population. Examining the true partition for the setO2 reveal distinction of

two types of partitioning tasks. In the case of the class finding task,o1 ando2 are sure to

belong to different clusters even in theO2. Because objects are generated independently,

the existence of the objecto9 will not affect weathero1 ando2 are in the same cluster or

not. In the case of the true clustering task, these two objects might belong to the same

cluster. This is because the mutual influences between theo9 and the other objects might

completely change the true partition forO2.

To accomplish the class finding task, referring attributes of objects is sufficient for

finding relations between individual objects and the unobserved classes. Therefore clus-

tering techniques that only based on attributes of objects can be regarded as being de-

signed for the class finding task. We may say that some of the clustering or unsupervised

learning techniques, such ask-means or the AutoClass, are classified into this type of
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� �

(a) an object set,O1, for which the true partition consists of two clusters.

� ��

(b) an object set,O2, that is identical to the above set except for the object,o9

Figure 3.2: Two examples of object sets to explain distinction between two types of par-
titioning tasks
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clustering tasks. In contrast, to carry out the true clustering task, it is required to refer

mutual influences among objects. So attributes representing features of such influences,

i.e. attributes of pairs, is required. The so-called natural clustering tasks or the image

segmentation tasks are typical examples. Clustering techniques that can handle attributes

of pairs can be regarded as being designed for this type of task, and the minimum distance

method is a representative of such techniques.

If a LCE technique can only deal with either of the two tasks, users have to specify

which types of tasks they try to solve. Thus we consider that it is required to define LCE

formalization that can acquire rules to applicable to the above both types of tasks. It is the

reason that we employ both types of attributes together.

We then mention about using attributes of partitions. To derive the true partitions, one

has to take into consideration not only the local features of object sets but also global

features, i.e. attributes of partitions. For example, the attribute “the numbers of clusters”,

is typical example of such global features. To solve the image segmentation problem,

it is required that proper numbers of clusters have to be specified automatically. If LCE

techniques cannot deal with such global features, one will not able to apply the techniques

to solve the segmentation problem. Therefore, we introduced attributes of partitions to our

LCE formalization.
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Chapter 4

The Partitioning Method

In this chapter, we describe our partitioning methods. In general, a partitioning rule is

firstly learned and then the rule is applied for partitioning, but we describe partitioning

method in this chapter for convenience of explanation.

Let π be an arbitrary partition for an unseen object setO, andπ=π∗ be the event that

theπ is equals to the true partitionπ∗. To select the most plausible true partition among

possible partitions, we adopt a maximum a posteriori (MAP) estimator, namely, the one

that maximizes the joint probability of an eventπ=π∗ and all the attribute value vectors

assigned to the object set. The joint probability is

Pr [π=π∗ , A(π); {A(o)} , {A(p)}], (4.1)

where{A(o)} and{A(p)} are sets of all attribute value vectors assigned to constituents

of O andP , respectively. Since{A(o)} and{A(p)} only depend on the given object

21
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set and are independent from selection ofπ, we treat these value vectors as precondition

to determine a distribution of the joint probability. Equation (4.1) is hard to calculate

directly because a number of elements (#O+#P+1) is not constant, and this property is

not suitable for most of statistical techniques. We therefore decompose it into the product

of two terms and try to calculate each individually:

Pr [π=π∗; {A(o)} , {A(p)}] , (4.2)

Pr [A(π)|π=π∗; {A(o)} , {A(p)}]. (4.3)

Maximizing the product of these two equations is the key to our method. To maximize

Equation (4.2), we show how it can be manipulated into a more manageable form. The

details of this manipulation are complicated and we defer them until the next section.

Without going into the details of the representation here, the rewritten equation looks

like:

∏

p∈P+

f1(p)×
∏

p∈P−
f̄1(p). (4.4)

As for Equation (4.3), we make the assumption that it is free from the preconditions

{A(o)} and{A(p)}. By definition, the value vectorA(π) is calculated from the vectors,

{A(o)} and{A(p)}, together with states of a partition,π. Therefore, the effects of{A(o)}

and{A(p)} are already embedded inA(π), even if we didn’t explicitly refer to them as
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function preconditions. By introducing the assumption, Equation (4.3) is rewritten simply

as the probability density:

Pr [A(π)|π=π∗]. (4.5)

This density is calculated by the functionf2(A(π)), which is acquired by the learning

method described in Section 5.2. Consequently, to maximize Equation (4.1), all that we

need to do is to maximize the product of Equation (4.4) and Equation (4.5).

We then describe our procedure to search for the most plausible true partition, that is

achieving the maximum of the above product. According to the literature (e.g., [7]), the

number of possible partitions forO is

#O∑
j=1

(
1

j!

j∑
i=0

(−1)j−i

( j

i

)
i#O

)
,

and this number increases exponentially according to the number of objects. Therefore,

finding the optimal partition is not tractable in general, and we rely on the greedy search

algorithm of Figure 4.1 to find a partition that may be locally optimal. In this algorithm,

an initial partition is iteratively changed by applying modification operations. In each

iteration, the operation that maximize the product of Equation (4.4) and (4.5) is applied.

This iteration stops when no operation improves the product.

The details of this algorithm is as follows. In Figure 4.1, Eq4(π) and Eq5(π) denote

the values of Equation (4.4) and (4.5) whenO is partitioned intoπ, respectively. The algo-

rithm begins by creating an initial partition whose constituent clusters are made up of only
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the procedureMAIN

t := 0, π0 := {C = {o} , ∀o ∈ O}
if (Eq5(π0) > 0) then{

f := true, E0 := Eq5(π0)× Eq4(π0)
} else{

f := false, E0 := Eq4(π0)
}
start:

t := t + 1, Et := Et−1

forall (CA ∈ πt−1 , CB ∈ πt−1 , CA 6= CB) {
π′ := πt−1 − CA − CB + {CA ∪ CB}, call EVALUATION (π′)

}
if (f = true) {

forall (CA ∈ πt−1 , CB ∈ πt−1 , CA 6= CB) {
forall (o ∈ CA) {

π′ := πt−1 − CA − CB + {CA − {o}}+ {CB ∪ {o}}, call EVALUATION (π′)
}

}
}
if (f = false ∨ Et 6= Et−1) then gotostart

outputπt−1

end

the procedureEVALUATION (π′)
if (f = false) then{

if (Eq5(π′) > 0) then{
f := true, πt := π′, Et := Eq5(π′)× Eq4(π′)

} else if (Eq4(π′) > Et) then{
πt := π′, Et := Eq4(π′)

}
} else if (Eq5(π′)× Eq4(π′) > Et) then{

πt := π′, Et := Eq5(π′)× Eq4(π′)
}
return

Figure 4.1: Our algorithm for searching an true partition
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one object, and then refines this partition so as to maximize the product of Equation (4.4)

and (4.5). This refinement is done by applying two types of operations: amerge, that

merges a pair of clusters, and amove, that moves one element from one cluster to another.

When no partition that achieves a larger value of the product is found, this algorithm stops

and then outputs the current partition as the most plausible true partition. Note that, the

basic role of the procedureEVALUATION is to calculate a value of the product. The value

is used to compare two partitions, one is the current, and the other is the one into which

the current is transformed by applying arbitrary operations. TheEVALUATION procedure

treats separately the condition, where Equation (4.5) has been zero from the beginning

of the algorithm, because the product becomes zero even if a value of Equation (4.4) is

non-zero. Therefore, while this condition holds,EVALUATION simply returns the value

of Equation (4.4), and the moving operation is not applied to avoid infinite loop. Once

a partition for which Equation (4.5) is not zero is found, this special case is no longer

invoked.

4.1 How To Maximize The Probability:

Pr [π=π∗; {A(o)} , {A(p)}]

Here we give details on the transformation of Equation (4.2) into Equation (4.4) that we

used above.

Because Equation (4.2) refers to many (#O+#P ) value vectors as preconditions and
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the number of elements of these vectors is not constant, it is not straightforward to calcu-

late its value. Therefore, we adopt the following technique to calculate it. We first gen-

erate a set of probabilities each of which is calculated based on two value vectors from

{A(o)} and one from{A(p)}. These probabilities are then combined by using Dempster

& Shafer’s rule of combination [26] (DS rule for short). So it is helpful to describe the

DS rule before moving on to our calculation method for Equation (4.2).

The DS rule is used for combining probabilities based on different pieces of evidence.

Let e be an event,Ea be an event set, andEAll be the set of all possible events. Let

P (EAll) be the power set ofEAll, i.e. {Ea : ∀Ea ⊆ EAll}. Pr [Ea] denotes the probability

that one of the events inEa occurs, and is called abasic probability. Basic probabilities

satisfy these conditions:

Pr [Ea] ≥ 0 , Pr [∅] = 0 ,
∑

Ea∈P (EAll)

Pr [Ea] = 1.

Pr [Ea; Ax] denotes a basic probability forEa based on the evidenceAx. Let [Ea; Ax] be

an event set for whichPr [Ea; Ax] is defined. The difference between[Ea; Ax] andEa is

that the evidenceAx is given together or not. Givenn distinct pieces of evidences,A1 ,

. . . , An, an combination of event sets,{[E1; A1] , . . . , [En; An]}, is defined as follows.

The[E1; A1] is an arbitrary event setE1 ∈ P (EAll) based on the evidenceA1. The rest of

event sets are the same as[E1; A1] except for that each of event sets is based on the distinct

evidencesA2 ,. . .,An. The{[E1; A1],. . .,[En; An]} is a combination of these event sets. It

should be noted that event sets,E1 ,E2 , . . . ,En, may be different or identical.
⋂{[E1; A1] ,
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. . . , [En; An]} be the intersection of such a combination of event sets. According to the

DS rule, the probability of a specific evente based onn evidences is

∑T{[E1;A1],...,[En;An]}={e}
(∏

Pr [Ea; Ax]
)

1−∑T{[E1;A1],...,[En;An]}=∅
(∏

Pr [Ea; Ax]
) . (4.6)

The numerator of the above equation denotes the sum of
∏

Pr [Ea; Ax]’s in the case that

⋂{[E1; A1] , . . . , [En; An]} is exactly equal to{e} over the all possible combinations of

event sets.
∏

Pr [Ea; Ax] denotes the product of basic probabilities assigned to[Ea; A1] ,

. . . , [Ea; An] where[Ea; Ax]’s are the event sets that satisfy the condition of the sum. Con-

cretely, consider a combination of event sets{[E1; A1] , . . . , [En; An]}. If the intersection

of the combination is equal to{e}, a product
∏

Pr [Ea; Ax] is Pr [E1; A1]×Pr [E2; A2]×

· · · × Pr [En; An]. The numerator is the sum of products in all cases that a condition

⋂{[E1; A1] , . . . , [En; An]} = {e} is satisfied. The denominator is calculated in the same

way except for summing in the case that the intersection of event sets becomes an empty

set.

We then present how to use the DS rule in our transformation of Equation (4.2).

Strictly speaking, the presumptions and semantics of the probabilities manipulated by

the DS and the Bayesian theories are different. However, it is well known that the DS

theory can be regarded as a generalization of the Bayesian theory. Therefore, we intro-

duce the DS theory to calculate the probability of Equation (4.2). Since the precondition

of Equation (4.2) presents an event that sets of attribute value vectors{A(o)} and{A(p)}
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are simultaneously observed, by definition, the precondition corresponds to an event that

{A(o)} ∪ {A(p)} are observed. This precondition can be treated as evidences in the

context of the DS rule, because both of these can be regarded as basis to determine the

distribution ofπ=π∗. An overview of the procedure to calculate the probability of Equa-

tion (4.2) is as follows: We first extract subsets from{A(o)}∪{A(p)} such that the union

of the subsets exactly equals to{A(o)} ∪ {A(p)}. We calculate basic probabilities whose

evidences are each of the subsets, then combine these probabilities by applying the DS

rule. The combined probability can be regarded the probability whose evidence is the

attribute value set,{A(o)}∪{A(p)}, since the union of the subsets equals to the set itself.

As the subset of value vectors, we choose the subset,{A(oi) ,A(oj) ,A(pij)}, that consists

of attribute values related to an object pair,pij. Let in(pij , π) be the function that takes 1

if both oi andoj are in the same cluster of the partitionπ, and 0 otherwise. The following

probabilities,f1(p
ij), are calculated for each object pair inP :

f1(p
ij) ≡ Pr [in(pij , π∗) = 1; AC(pij)],

whereπ∗ is the true partition. The attributeAC(pij) is a combination of the three at-

tributes,A(oi), A(oj) andA(pij), which we will fully explain in Section 5.1. The function

f1(p) is acquired in advance from an example set in the learning stage.

To compute Equation (4.2) by using the DS rule to combine the above probabilities,

we first introduce some notations. The functionev (Π) is defined asev (Π) = {π=π∗ :

∀π ∈ Π}, whereΠ is an arbitrary set of partition. We useΠAll to denote the set of
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π1 =(o1 , o2 , o3 , o4) π2 =(o1)(o2 , o3 , o4) π3 =(o2)(o1 , o3 , o4)
π4 =(o3)(o1 , o2 , o4) π5 =(o4)(o1 , o2 , o3) π6 =(o1 , o2)(o3 , o4)
π7 =(o1 , o3)(o2 , o4) π8 =(o1 , o4)(o2 , o3) π9 =(o1)(o2)(o3 , o4)
π10=(o1)(o3)(o2 , o4) π11=(o1)(o4)(o2 , o3) π12=(o2)(o3)(o1 , o4)
π13=(o2)(o4)(o1 , o3) π14=(o3)(o4)(o1 , o2) π15=(o1)(o2)(o3)(o4)

Figure 4.2: An example of all the possible partitions for the object set:{o1 , o2 , o3 , o4}

all possible partitions forO. Now, let us focus on the set of basic probabilities whose

evidence isAC(p) of an arbitraryp. The functionf1(p) can then be rewritten as the

following basic probabilities:





Pr [ev (Π(p)); AC(p)] ≡ f1(p), whereΠ(p) = {π : ∀π ∈ ΠAll , in(p , π) = 1}

Pr [ev (Π̄(p)); AC(p)] ≡ 1−f1(p), whereΠ̄(p) = ΠAll − Π(p).

To give an example here, consider the object setO = {o1 , o2 , o3 , o4}. For this set,

ΠAll is the set of fifteen partitions as shown in Figure 4.2, where the objects in parenthesis

form one cluster. And the setΠ(p12) is {π1 , π4 , π5 , π6 , π14}, since these five partitions

are the only ones which satisfy a condition thato1 and o2 are in the same cluster. In

general, an event that both objects ofp are in the same cluster, by definition, corresponds

directly to an event thatO is partitioned into any of the partitions inΠ(p). We assign a

probability of zero to any subset ofΠAll, except the two setsΠ(p) andΠ̄(p). As a result, a

set of basic probabilities consists of two non-zero probabilities,Pr [ev (Π(p)); AC(p)] and

Pr [ev (Π̄(p)); AC(p)], and the zero probabilities assigned to any other event sets except

for these two.



30 CHAPTER 4. THE PARTITIONING METHOD

Such sets of basic probabilities can be drawn for every pair inP , and hence#P

probability sets can be derived. Since we treat preconditions of probability as evidences,

each of these probability set can be considered as a set of basic probabilities based on

evidences,A(oi), A(oi), andA(pij). And union of these evidences, exactly equals to

{A(o)}∪{A(p)}. Therefore, the combination of these probability sets corresponds to the

probability based on the evidence,{A(o)} ∪ {A(p)}.

Using this technique, a process to maximize Equation (4.2) for an arbitraryπ is as

follows. According to Equation (4.6), the combined probability is

∑T{[Ea;AC(p)],∀p∈P}={π=π∗}

{∏
Pr [Ea; AC(p)]

}

1−∑T{[Ea;AC(p)],∀p∈P}=∅
{∏

Pr [Ea; AC(p)]
} . (4.7)

For a fixedp, we choose an event setev (Π(p)) asEa if in(p , π)=1, and a setev (Π̄(p))

otherwise. This procedure is repeated for allp in P . The intersection of these event

sets exactly consists of one element,π=π∗, and any other combination of event sets does

not derive any sets including the eventπ=π∗. This is because, for eachp in P , π=π∗

is always an element of eitherev (Π(p)) or ev (Π̄(p)). Consequently, in order to find

the combined probability, we should choose a basic probabilityPr [ev (Π(p)); AC(p)], if

π=π∗ is an element ofev (Π(p)), andPr [ev (Π̄(p)); AC(p)] otherwise. The numerator of

Equation (4.7) is represented as follows:

∏

p∈P+

Pr [ev (Π(p)); AC(p)]×
∏

p∈P−
Pr [ev (Π̄(p)); AC(p)],



4.1. HOW TO MAXIMIZE THE PROBABILITY: PR[π=π∗; {A(O)} , {A(P )}] 31

whereP+ is a subset ofP consisting of pairs that satisfy the conditionin(p , π) = 1, and

P− is its complementary set. For example, in the case of Figure 4.2, for the partitionπ4,

P+ would be{p12 , p14 , p24}. By introducing the functionf1(p), the above equation can

be rewritten as

∏

p∈P+

f1(p)×
∏

p∈P−
f̄1(p), (4.4’)

wheref̄1(p) is 1−f1(p). Looking once more at the example of Figure 4.2, the probability

assigned toπ4 in this example would be:

f1(p
12)f1(p

14)f1(p
24)× f̄1(p

13)f̄1(p
23)f̄1(p

34).

The denominator of Equation (4.7) has the useful property of being constant for any

possible partition. This is because the combination of event sets whose intersection be-

comes an empty set is independent of the choice ofπ. Therefore, since Equation (4.2)

is proportional to Equation (4.4), the maximization of Equation (4.2) can be achieved by

just maximizing Equation (4.4). Thus, to achieve our overall goal of maximizing the joint

probability expressed in Equation (4.1), we can maximize:

f2(A(π))×
∏

p∈P+

f1(p)×
∏

p∈P−
f̄1(p). (4.8)

We add here a comment on the denominator of the combined probability. Calculating
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the value of this expression requires examining the condition where the intersection of the

event sets becomes an empty set. This occurs only when there is a contradiction among

the event sets. For example, consider an object set that consists of three objects,o1, o2 and

o3. For the set, if one observed an event thatp12 andp13 is in the same cluster, one never

observe an event thatp23 is not in the same cluster. Thus the intersection of combination

of event sets,ev (Π(p12)), ev (Π(p13)) andev (Π̄(p23)), becomes an empty set, and the

probability assigned to this combination,f1(p
12)f1(p

13)f̄1(p
23), is adopted as a term of

the denominator. There are two more combinations that lead to such a contradiction, and

so the denominator becomes:

1−
(

f̄1(p
12)f1(p

13)f1(p
23) + f1(p

12)f̄1(p
13)f1(p

23) + f1(p
12)f1(p

13)f̄1(p
23)

)
.

In brief, the role of the denominator is to normalize the combined probability by elimi-

nating the probabilities assigned to the combinations of events that lead to such a contra-

diction.



Chapter 5

The Learning Methods

In this chapter, we present the method for acquiring the two functions,f1(p) andf2(A(π))

from the given example set,EX, in the learning stage.

5.1 Acquisition of The Function: f1(p)

As described in the previous chapter,f1(p) is defined as:

f1(p
ij) = Pr [in(pij , π∗) = 1; AC(pij)].

This function is applied in two steps. At first, the value vectors,A(oi), A(oj), andA(pij),

are combined into one value vector,AC(pij). The function then derives the probability

when the combined vector is given. The actual acquisition procedure of the function itself

is also composed of two steps: a given training example set is first transformed into an

33
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example set,ex1, and then the function is acquired from this new set.

To acquiref1(p
ij), it is required examples that are pairs of an observed value vector

and a target value, i.e.AC(pij) and in(pij , π∗) (a common format for the technique of

learning from examples). We therefore transform a given example setEX into a set of

examples in this form. Each example is generated from an object pair in an object set

from the original example set. Thus, the number of elements in the transformed example

set is the sum of the object pairs in the training example set, i.e.#ex1 =
∑#EX

I=1 #PI .

We denote a transformed example by(AC(pij) , c), where the objects and object pairs are

assumed to come from the same example(OI , π∗I ). And where the classc takes the value

in(pij , π∗I ), so thec becomes0 or 1. The value vectorAC(pij) is calculated by combining

the three attributesA(oi), A(oj), andA(pij). Our combination procedure is defined so as

to be invariant under the ordering of indices, so that the value of the combined attribute

AC(pij) is always equal toAC(pji). To produce such combined vectors, we copy all

the values ofA(pij) into the top of the combined vector. Additional elements are then

concatenated to this combined vector by considering, one by one, the elements of the

original vectorsA(oi) andA(oj). Thes-th elements of these original vectors,as(oi) and

as(oj), are merged and added to the combined vector according to the following rules:

• If these twos-th elements take continuous values, the smaller value is added as an

element of the combined vector, and the larger value is added as the subsequent

element. That is, if the smaller value is added to the combined value as thet-th

element, the larger value would be added as the(t + 1)-th element.
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• If these twos-th elements take discrete values, the values are merged into one and

added into the combined vector. If the number of possible values for the original

attribute isd, the merged attribute can take one of a possibled(d+1)/2 values. For

example, if the possible values are “yes” and “no”, the merged value can take one

of the values “yes–yes”, “ yes–no”, or “ no–no”.

As an example, consider the value vectorA(pij) with two elements, the first discrete

and the second continuous, and the vectorsA(oi) andA(oj) both of which are with two

elements, the first continuous and the second discrete. Given the attribute valuesA(pij) =

(yes , 100), A(oi) = (50 , yes), andA(oj) = (10 , no), the combined attributeAC(pij)

would be(yes , 100 , 10 , 50 , yes-no).

5.1.1 Our Algorithm to Estimate The Function: f1(p)

We next describe the algorithm to estimate the functionf1(p) from the transformed ex-

ample set,ex1. The example set can be simply represented by a form of{(A1 , c1) , (A2 ,

c2) , . . . , (A#ex1 ,c#ex1)}, wherecI = {0 ,1} is a value of the functionin(p ,π∗), andAI =

(a1 , a2 , . . . , a#A) denotes the combined attribute value vectorAC(p). This algorithm

finds the conditional probability function,Pr [cU=1|AU ] for an unseen vectorAU .

Before turning to the acquisition method of the probability function, we first present

the decision lists[31] used for representing the function. LetT be a term that is the

conjunction of literalsL. The literalL is a logical function that can take the binary values

true or false when an attribute valuesa is given, as follows:
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• for attributesa that take continuous values, the three possible forms of the literal are

(θl ≤ a), (θl ≤ a < θu), and(a < θu), whereθl andθu are proper threshold values.

Such a literal takestrue whenever the valuea satisfies the condition specified by

the literal.

• for attributesa that take discrete values from some setV , a literal has the form(a =

v1 ∨ v2 ∨ · · · ∨ vd′), wherev1 , . . . , vd′ are elements of the setV . This literal takes

true whenever the value ofa is one ofv1 , . . . , vd′.

Decision lists are defined as a pairing of an ordered term list〈T1 , T2 , . . . , Tm−1 , true〉

and a probability list〈Pr 1 ,Pr 2 , . . . ,Pr m〉, wheretrue is a term that always outputstrue.

Specifically, when the unseen value vectorAU is applied to a term list in the orderT1 ,T2 ,

. . . , true, if Tk is the first term that outputs true, the decision lists output the value of the

correspondingPr k as the conditional probabilityPr [cU=1|AU ].

We note here the reason why we adopt not decision trees but decision lists. First,

Pagallo and Haussler [18] have pointed out that the size of the decision trees tends to

drastically increase if the concept to be learned is disjunctive. Secondly, the size of the

example set drastically decreases, since the decision trees are usually acquired by a so-

called divide-and-conquer procedure and the example set is divided whenever a new node

is created. This property weaken stochastic stability.

Our algorithm for acquiring the above decision lists is described in the Figure 5.1.

This algorithm finds the most probable decision list based on Rissanen’s MDL (Minimum

Description Length) principle [24, 25], which has been successfully adopted in learning
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the procedureSEARCHING

example setS := ex1

term no. i:=0, decision listDL := 〈〉
conditional probabilityPR := 〈〉
do{

i := i + 1
the number of updating timesj := 0

j-th updated termT j
i := true

do{
j := j + 1
Let LB be the literal maximizing the evaluation function

andGB be the function value for theLB †
if (GB ≤ 0) then{

T j
i := T j−1

i , gototerm end
}
T j

i := T j−1
i ∧ LB

} until(every classes of elements inS(T j
i ) is all 0 or all 1)

term end:
if (T j

i = true) then gotolist end
Add T j

i to DL andPr (S(T j
i )) to PR ††

S := S − S(T j
i )

} until(every classes of elements inS is all 0 or all 1)
list end:
Add true to DL andPr (S) to PR

the procedurePRUNING

total code length̀ := `(ex1 , DL)
the number of termsm := i + 1
while(m > 1) {

S ′ := S(Tm) ∪ S(Tm−1)
DL′ := 〈T1 , . . . , Tm−2 , true〉, PR′ := 〈Pr 1 , . . . Pr m−2 , Pr (S ′)〉
`′ = `(ex1 , DL′)
if (` ≤ `′) then gotonoprune
DL := DL′, PR := PR′, m := m− 1, ` = `′

}
noprune:
outputDL, PR
end

Figure 5.1: Our algorithm for searching decision lists
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from examples techniques [15, 21, 29]. This principle selects the best model from a given

set of candidate stochastic models and is stated as “select the model in the observed data

that permits the shortest encoding both of the observations and the model.” Grounded

in this principle, we formalize a set of stochastic models representing the conditional

probability functions and specify a coding scheme for this set. In Figure 5.1, we show

the procedure for finding the decision list that permits the shortest code length, and the

coding schemes of the decision lists are summarized in Appendix A. We here make some

remarks related to Figure 5.1.

This algorithm is composed of two procedures:SEARCHING and PRUNING. The

former is the procedure for finding a decision list by repeatedly adding terms so as to

achieve the shortest code length and then removing examples satisfied by the list. In the

latter procedure, the acquired decision list is polished.

We first discuss the evaluation functionGB and the literalLB at the mark† in Fig-

ure 5.1. This evaluation function is designed to find the term that is useful for achieving

the shortest code length. LetS(T1) be the subset of the current example setS that consists

of elements that satisfy the condition specified by the termT1. Let#S(T1) be the number

of elements inS(T1), and`(S(T1)) be the code length forS(T1). Assume two termsT1

andT2 that satisfy the conditionS(T1) ⊇ S(T2). If the condition

`(T1) + `(S(T1))

#S(T1)
>

`(T2) + `(S(T2))

#S(T2)
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is satisfied, the evaluation function is

G(T1 , T2) =
(
`(T1) + `(S(T1))

)−
(
`
(
T2

)
+ `(S(T2)) + `

(
S(T1)− S(T2)

))
,

and otherwise0, wherè (T1) is the code length forT1. TheLB is the literal that maximizes

the evaluation functionG(T j−1
i , T j−1

i ∧ L) over all literalsL that satisfy the condition

S(T j−1
i ) ⊇ S(T j−1

i ∧ L). GB is the output of the function at that time.

Next, we comment onPr (S(T j
i )) calculated at the mark††. Because we adopt the

coding scheme of example sets in [29], this is defined as:

Pr (S(T j
i )) =

#S+(T j
i ) + 1

#S(T j
i ) + 2

,

whereS+(T j
i ) is composed of the elements inS(T j

i ) whose class labels are1. Details

about the code length of decision lists and example sets are shown in Appendix A.

We finally add comments on the reason why we adopt our original algorithm, despite

many algorithms for estimation of posterior probabilities have been developed to date.

These algorithms are designed so as to try to minimize the expected0-1 loss, which

is the ratio of incorrectly classified examples. For example, the method for acquiring

decision tree based on MDL principle [15] using coding scheme dealing with the0-1 loss.

Most of existing algorithms designed for this purpose. In contrast to this, we introduce

coding scheme aiming to minimize the KL divergence, which measures how closely the

probability is estimated. Since, for the function used in the LCE task, it is important
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that the ability can estimate probability as precisely as possible, we develop and use an

algorithm having the property.

5.2 Acquisition of The Function: f2(A(π))

We next describe the method for acquiring the functionf2(A(π)) that is required for the

calculation of Equation (4.5). This function is the conditional probability density ofA(π)

given the eventπ=π∗.

Our algorithm to derive the density function requires an input whose form is a set of

attribute value vectors. Therefore we transform the original training example set,EX

into this form. Recall that the setEX is composed of examples of object setsOI with

their true partitionsπ∗I . For each element of this set, we calculate the attribute value vector

A(π∗I ). We refer to the set of these vectors as the transformed example set,ex2. Since each

element of theex2 follows the density,Pr [A(π) , π=π∗], we can derive thef2(A(π)) by

estimatingPr [A(π) , π=π∗] from theex2 and then dividing this byPr [π=π∗]. However,

thePr [π=π∗] cannot be estimated pragmatically. This is because the number of possible

partitions is enormous in comparison to the number of given examples. Therefore we

assume thatPr [π=π∗] is uniform, so thePr [A(π) , π=π∗] come to be proportional to

f2(A(π)).

Now, all we have to do is estimatingPr [A(π),π=π∗]. With the setex2 as its input, our

algorithm described below can calculate the density. We employregression trees[3] to

represent the density function. So before turning to explain our algorithm, it is helpful to
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Figure 5.2: An example regression tree

describe the regression trees. An example of a regression tree is shown in Figure 5.2. The

tree in this figure has terminal and non-terminal nodes. Each non-terminal node, shown by

a rectangle, has one threshold, one index that specifies which element ofA(π) should be

compared, and two branches connecting it to other nodes. In addition, each terminal node,

shown by a rounded rectangle, has a probability density value. When a fixed value vector

A(π) is given, the proper probability density value is found by recursively descending

through the regression tree to a terminal node, as follows. First, the vector is compared

to the threshold specified at the root node of the tree (for the specific index indicated at

the node). If the value is smaller than the threshold, then the left branch of the node is

descended. Otherwise, the right branch is descended. If the next node in the tree is also

non-terminal, the process of comparing the specified attribute value and the threshold at

the node is repeated, until a terminal node is reached. At a terminal node, the proper

probability density value is simply the value specified by the node. For example, suppose
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that the vector(0.3 , 0.5) is applied to the regression tree in Figure 5.2. The first value

of the vector is compared to a threshold of0.5 at the root node (labelednn1). Since the

value is smaller than the threshold, the left branch is traced and the nodenn2 is found.

The nodenn2 is also non-terminal, so the second value of the vector is then compared to

the threshold0.1. As a result, we reach the terminal nodetn2. This gives a value of0 as

the target probability density0.

Thus, if we can compute a regression tree, we can find the probability density of

partition attributes. To do this, we use the algorithm as follows. This procedure is also

grounded in the MDL principle. We describe a set of stochastic models and define a

scheme for coding both of the models and the given example set. Then, as the function

f2(A(π)), we employ the model that permits the shortest code length.

We here present the coding scheme for the regression trees, that are used for repre-

senting the target function. The code length for a structure of the regression tree equals

the total number of nodes. The article [21] presents a full explanation of the code length

and of the coding scheme for the tree. For each non-terminal node, a threshold and an

index at the node must be encoded. The threshold is encoded in the same scheme as that

used for the threshold of the decision lists in Appendix A, and the code length for the

index is log #A(π). Note thatlog is logarithm whose base number is2 and ln denotes

natural logarithm in this paper. The scheme presented here makes it feasible to specify

an arbitrary regression tree,RT , with code length̀ (RT ). Next, an example set,ex2,

must be encoded by using this regression tree. According to [32], the total code length is



5.2. ACQUISITION OF THE FUNCTION:F2(A(π)) 43

approximated

`(ex2 , RT ) = `(RT ) + {− logL(ex2|RT ) +
1

2
#TN(log e + log #ex2)},

whereL(ex2|RT ) is the likelihood,#ex2 is the number of examples inex2, and#TN is

the number of terminal nodes inRT . The likelihood ofex2 is defined as follows. LetTN

be the set of all terminal nodes in theRT , andtnx be its element. Let#tnx be the number

of examples inex2 that reaches the terminal nodetnx. L(ex2|RT ) is defined as

L(ex2|RT ) =
∏

tnx∈TN

Pr [tnx]
#tnx ,

wherePr [tnx] is the probability density at the nodetnx defined as:

Pr [tnx] =
#tnx

#ex2 × V (R(tnx))
.

R(tnx) is the region for a value vector such that if the vector rangesR(tnx), it reaches

the terminal nodetnx, andV (R(tnx)) is the volume ofR(tnx). For example, in the case

of nodetn2 in Figure 5.2, any value vectors within the rangea1(π) < 0.5 anda2(π) ≥

0.1 that are inputted to this regression tree would reach the nodetn2. SoR(tn2) is (0 ≤

a1(π) < 0.5) ∧ (0.1 ≤ a2(π) ≤ 1)), andV (R(tn2)) is 0.45(= (0.5− 0)× (1− 0.1)).

In order to acquire the functionf2(A(π)), we must find the regression tree that permits

the shortest total code length`(EX2 ,RT ). For this purpose, we introduce an algorithm in
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the procedureMAIN

ex2 := {A(π1) , A(π2) , . . . , A(π#ex2)}: the example set
RT := (TN , NN): a regression tree whose root node is terminal

TN := {tn1}: a set of terminal nodes (tn1 is a root node)
NN := {}: a set of non-terminal nodes

for s from 1 to #A(π) {
δs := 6× 〈standard deviation ofas(π1) , as(π2) , . . . , as(π#ex2)〉/#ex2

}

start:
RTbest := RT
foreachtn′ in TN {

for s from 1 to #A(π) {
Let l andu be the lower and the upper bound

of thes-th attribute of the regionR(tn′) respectively
for d from 1 to∞ {

q := (1/2)d

if (q < δs) then gotocheckend
for t from 1 to 2(d−1) {

θ := q(2t− 1)
if ( l ≤ θ < u) then{

RT′ := (TN′ , NN′)
NN′ := NN ∪ nn′

(nn′ is the terminal node whose threshold isθ
and is placed at the position used to betn′)

TN′ := {TN− tn′} ∪ {tnR
new , tnL

new}
(tnL

new andtnR
new are the right and the left node of of thenn′)

if (`(ex2 , RT′) < `(ex2 , RT)) then RT:= RT′

}
}

}
checkend:

}
}
if (RTbest 6= RT) gotostart
end:
output RTbest
end

Figure 5.3: Our learning algorithm for searching regression trees



5.2. ACQUISITION OF THE FUNCTION:F2(A(π)) 45

Figure 5.3. This algorithm adopts a divide-and-conquer strategy that recursively divides

a given training example set. Initial regression tree consists of only one terminal node,

and represents an uniform density function that is always at constant1. The current tree is

iteratively modified. This modification operation is as follows: One of terminal nodes of

the current tree is replaced with new non-terminal node and two new terminal nodes are

added at the branches of the new non-terminal node. The replaced terminal and the new

non-terminal node are selected so as to maximize`(EX2 , RT ). Finally, this algorithm

stops when no improvement is feasible, and outputs the current tree.
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Chapter 6

Experimental Domains and Testing

Methods

We have applied our technique of learning from cluster examples to two test domains: dot

patterns and vector-data images.

6.1 Experimental Domains: Dot Patterns

Segmentation of dot patterns is a basic problem for clustering that features dots scattered

in a 2–dimensional space of the same width and height, as shown in Figure 6.1. Here, all

the dots from the same cluster are depicted with the same type of symbols. These dots

are usually generated by considering a number of circular regions that are also placed in

the space (in the figure, these regions are depicted by dotted lines). These circles are used

to create clusters by generating dots according to a Gaussian distribution (note that if any

47
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Figure 6.1: An example of a dot pattern
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dot falls outside the 2–dimensional space in this generation process, it is discarded and a

replacement is generated). For each region, the mean of the Gaussian distribution of its

dots is at the center of the circle, and the we use the following 2-dimensional Gaussian

mixture distribution:

f(x , y) =
m∑

j=1

zjN(x , y; µj , νj , σj) ,

N(x , y; µj , νj , σj) =
1

2πσ2
j

exp

(
−(x− µj)

2 + (y − νj)
2

2σ2
j

)
,

wherem is the number of clusters,zj specifies the ratio of mixing,µj andνj are means

of thex andy positions, andσj is a standard deviation. This standard deviation differs

depending on the types of example sets. We prepared three types of example sets with

varying degrees of overlap between the different clusters. To create each set, we first

randomly generated a value form, and createdn random points within the space. We

then created circular regions of radiusrj , 1 ≤ j ≤ m around each of these points, by

generatingrj randomly under the constraint that each of the resulting circles must touch

at least one other (as shown in the example of Figure 6.1). Depending on the type of

example set we wanted to create, we then assignedσj to be eitherσj = rj/3.0 (for a

separatedexample set),rj/2.5 (for a touchingexample set) orrj/2.0 (for a overlapping

example set). Note that we force the covariance to be zero, namely, thex andy deviations

are equal.
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Our three example sets each contain 10 to 1000 elements. Each object set in the

example sets contains 50 dots composing two to four clusters. Four attributes of objects,

eight attributes of pairs and one attribute of partitions are used, as detailed in Section 6.1.1.

To provide a comparison for our learning from cluster examples technique, we also

applied the following EM algorithm (a common clustering technique) [6] to the task of

partitioning the dot patterns. Letn be the number of observed objects and(xi , yi) be

the position of thei-th object. The EM algorithm leads to the parameter values of a

distribution function so as to maximize the log-likelihood:

logL(x1 , . . . , xn , y1 , . . . , yn) =
n∑

i=1

log f(xi , yi).

After the parameter values are estimated, each object is classified into thek-th cluster

such that:

k = argmax
j=1,...,m

zjN(xi , yi; µj , νj , σj).

The initial conditions we used for the EM algorithm parameters were as follows. First,

we assumed that the correct number of clusters#π∗ was explicitly given asm, and then

we initialized all theσj ’s to S/6 (S is width or height of the 2–dimensional space) and all

thezj to 1/#π∗. As an initial guess at the actual clustering, we assumed that the means

of the clusters were equi-distantly placed on a circle of radius0.3× S in the center of the

space.
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6.1.1 Attributes for Dot Patterns

In this section, we give full explanation of attributes that is adopted in our experiments.

We select these attributes by using the primitive feature selection technique as follows.

First, we select widely used attributes as candidates. In this selection, we reject attributes

that need laborious tuning or too much computation resources. We then extract many

attribute subsets from the set of the candidate attributes. Finally, by using testing method

described later, we adopt the best among these attribute subsets. Note that, it is certainly

clear that selection of attributes will affect the performance of estimation. But this at-

tribute selection problem is irrelevant to the main subject, and to follow up this matter

would take us beyond the scope of this paper. Very many types of attributes have been de-

veloped in the vision literature, and the attribute selection problem is a major topic in the

machine learning literature. We suppose that results obtained by these works will helps

to solve our attribute selection problem.

The attributes assigned to objects and their pairs are briefly shown in Table 6.1. All

the attributes of objects should be fairly self-explanatory, being the X and Y coordinates

and the Euclidean distances to thek-th nearest neighbor (the value of parameterk will be

introduced below) and to the nearest dot. As for the attributes of pairs, the first attribute

is simply the Euclidean distance between two dots, but the second and the third attributes

require the imposition of a total order on the dots. Let us call the dots in the dot pairA

andB. First, the dots are ordered according to their Euclidean distance from dotA, and

the position index number of dotB in this order is found. Then, the dots are ordered
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Attributes of objects Attributes of pairs

1. X–position

2. Y–position

3. Distance to thek-th nearest dot

4. Distance to the nearest dot

1. distance between two dots

2. The smaller position index number in
ascending distance order

3. The larger position index number in as-
cending distance order

4. k-th nearest factor

5. Gabriel Graph factor

6. Relative Neighborhood Graph factor

7. Length of the longest edge on its MST
path

8. The number of edges on the MST path
joining the dots

Table 6.1: Attributes for dot patterns
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according to their distance from dotB, and the position index number of dotA in this

order is found. The second attribute of pairs then the smaller of these position index

numbers, and the third is the larger.

The fourth attribute of pairs is related to Wong and Lane’s work [30]. They employ

the following factor for clustering:

#O

2k
(Vk(A) + Vk(B)),

wherek is an adjustable parameter. The functionVk(·) gives the volume of a region

centered on a dot with radiusrk, the distance to thek-th nearest dot. In 2–dimensional

space, this is simplyVk(·) = πrk
2/2. We employ Wong and Lane’s factor as the fourth

attribute of the dot pairs, with parameterk (also mentioned above in relation to the third

attribute of objects) set to the value of2 ln #O, as suggested in [30].

The fifth and sixth attributes of pairs are related to Urquhart’s work [28] on graph

theoretical clustering. Urquhart proposes a clustering technique based on aGabriel graph

(GG) and arelative neighborhood graph(RNG). The GG is a graph having edges between

two dots, A and B, if no other dot lies in the circular region that can be constructed

between them as shown in Figure 6.2(a). The RNG is similar to this, except that the area

considered between the two dots is the region described in Figure 6.2(b). We adopt the

number of dots in these two types of regions as the fifth and the sixth attributes of pairs in

Table 6.1.

The seventh and eighth attributes are related to Zahn’s pioneering work on graph the-
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(a) Region for a Gabriel Graph

(b) Region for a Relative Neighborhood Graph

Figure 6.2: Dot-free regions in Gabriel graphs and relative neighborhood graphs
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oretical clustering [33] that employs aminimal spanning tree(MST). The MST is defined

as a tree connecting all the dots in a given dot pattern for which the sum of the lengths of

its constituent edges is minimal among all possible trees. There is only one path between

any pair of two dots on an MST. For the dotsA andB, we adopt the length of the longest

edge on the MST path between them as the seventh attribute and the number of edges on

this path as the eighth attribute.

Finally, we adopt the following one attribute of partitions:

a1(π) ≡ #π

#O

6.2 Experimental Domains: Vector-data Images

Vector-data images are often used in the process of diagram image understanding. A

vector-data image is represented by using line-segments and is typically used to represent

images drawn with thin lines, such as diagrams or maps. A line-segment is a straight line

connecting two end-points. Each line-segment corresponds to an object, and an entire

image does to an object set. Partitioning this type of object set is a more realistic task than

dot pattern partitioning.

We generated our example set of vector-data images by transforming handwritten

logic circuit diagrams. Handwritten diagrams were scanned by an image scanner, and the

common image processing techniques of thinning and vectorization were then applied.

The original handwritten diagrams consisted of five kinds of circuit parts: AND-gates,
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(a) a whole image

(b) an enlarged image

Figure 6.3: Examples of vector-data images
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OR-gates, buffers, terminals, and connecting lines. An example of a vector-data image

of a logic circuit diagram is shown in Figure 6.3(a). The segmentation task is then to di-

vide these vector-data images into clusters such that each cluster consists of line-segments

whose origins are the same circuit part.

This example set consists of 100 elements. Over this example set, the mean number

of clusters is16.7, and the mean number of objects per one object set is102.9. Eight

attributes of objects, seven attributes of pairs, and four attributes of partitions are used, as

shown in Section 6.2.1.

In Section 2.1, we pointed out four drawbacks of a non-systematic design approach,

and we can see here that our vector-data set is a good test bed for each of these drawbacks.

Firstly, in terms of the images themselves, there are no obvious features that help for par-

titioning the vector-data images. For instance, there are no visual clues such as contrived

color or markings. Such partitioning problem is just what we want to solve without de-

pending on intuition. Secondly, the difficulty of formalizing exceptional features can be

illustrated by examining some of the possible events in the images. For example, Fig-

ure 6.3(b) is an enlarged image that depicts the highlighted part of the OR-gate symbol

in Figure 6.3(a). This shows that there are several undesired events (spursandgaps) in

the image. The presence of such undesired events significantly complicates the task of

specifying concrete rules, since it is difficult to identify the features that how and where

these events will occur. We want our algorithm to be capable of acquiring concrete rules

that can be applied to such images. Thirdly, since the original diagrams are hand-written,
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these vector-data images are suffered some variation. The kind of solution that we want

to find for partitioning these images is one that is free from user tuning when applying

acquired rules. Finally, in order to enhance statistical stability of estimation, we also want

to rigorously separate the training examples from the testing ones. And our algorithm

deal with so many numbers of examples that exceeds the limitation of human cognitive

ability. These are what we have achieved with our LCE technique, as demonstrated in the

next chapter.

6.2.1 Attributes for Vector-Data Images

The attributes assigned to objects and their pairs are briefly shown in Table 6.2. The selec-

tion procedure of these attributes is the same in the case of experiments for dot patterns.

The first four attributes of objects are simply the X coordinate of the line-segment’s

mid-point, the Y coordinate of the mid-point, the difference between the X coordinates of

the two end-points, and the difference between the Y coordinates of the two end-points.

All the other attributes of objects are related to the notion of anarc: a series of con-

nected line-segments that do not pass branching or terminal points. When two of line-

segments connect, they must have exactly one end-point in common. Branching points

are defined as such end-points to which three or more line-segments are connected. Ter-

minal points are defined as such end-points to which only one line-segment is connected.

Four attributes are calculated from the arc involving the target line-segment. The first of

these is the number of line-segments in the arc. The subsequent attributes are the standard
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Attributes of objects Attributes of pairs

1. X coordinate of mid-point

2. Y coordinate of mid-point

3. Difference of X coordinate between
end-points

4. Difference of Y coordinate between
end-points

5. The number of line-segments in the arc
including the line-segment to which at-
tribute is assigned

6. Standard deviation of the lengths of the
line-segment in the arc

7. Standard deviation of the angles of the
line-segments in the arc

8. Sum of the lengths of the line-seg-
ments in the arc

1. Connection information

2. Difference of angles

3. Shortest distance between end-points

4. The smaller position index number in
ascending distance order

5. The larger position index number in as-
cending distance order

6. Distance between mid-points

7. Whether two line-segments are in the
same arc

Table 6.2: Attributes for vector-data images
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deviation of the lengths and the angles of the line-segments in the arc. Finally, the sum of

the lengths of the line-segments in the arc is also included as an attribute.

The attributes of pairs in Table 6.2 also require some explanation. Let us call the two

line-segments in the pairA andB. The first attribute, connection information, is then

defined as 



x− 1 if A andB are directly connected,

0 otherwise,

wherex is the total number of line-segments connecting to the end-point thatA andB

have in common. The second attribute is the difference between the angles of the line-

segments, regularized so as to range from0◦ to 90◦. The third attribute is the shortest

distance that can join an end-point ofA to an end-point ofB. The fourth and the fifth

attributes are found by imposing a total order on all the line-segments. This is similar

to the second and third attributes of the dot pairs in Table 6.1, except that the minimum

distance between end-points (as in the third property of pairs of line-segments) is used to

construct the order. The sixth attribute is the distance between mid-points ofA andB, and

the seventh attribute is a Boolean “yes” or “ no” to indicate whether the line-segmentsA

andB belong to the same arc.

Finally, we adopt the following four attributes of the partitions:
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a1(π) ≡ #π

#O

a2(π) ≡ exp(c2 × 〈Standard Deviation of{#CI}〉) , c2 =
ln 2

5

a3(π) ≡ exp(c3 × min
CI∈π

#CI) , c3 =
ln 2

3

a4(π) ≡ exp(c4 ×max
CI∈π

#CI) , c4 =
ln 2

20

We give the constants,cx’s, such that the mean of attribute values roughly becomes1/2.

These constants are introduced to make attribute values to be distributed as uniformly as

possible.

6.3 A Testing Method

Before showing our experimental results, we present a testing method for determining

whether true partitions are estimated using the acquired rule. The method is a kind of

cross-validation test that is commonly used for learning from examples. We have also

created a quantitative measure for comparing the estimated partition with the true partition

to test how closely the true partition has been estimated.

To begin with, for a cross-validation test, a given example set is split into two parts:

a training example set and a testing example set. After acquiring a rule for partitioning

from the training example set, the rule is evaluated to determine how correctly it can

partition the object sets in the testing example set. To get a reliable measure, we adopt a
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“leave-one-out-test” — a strict cross-validation test. The first example is picked from a

given example set, and a rule is acquired from the rest of the example set. Then, for an

object set in the picked example, a partition is estimated by using the acquired rule. Since

the true partition is already specified in the picked example, the estimated partition can

be easily compared with the true one, and the similarities between them are calculated.

This process is repeated for each of the other examples in the example set. The mean of

the similarities can then be used as a measure for ability to estimate true partition for any

unseen object by applying acquired rules.

We introduceratio of information loss(RIL), that is also called uncertainty coefficient,

as a similarity measure. The RIL is the ratio of the information that is not acquired to the

total information required for estimating a correct partition. Another definition of the RIL

is posterior entropy divided by prior entropy. LetΠ∗ be an event where an object pair

is in the same cluster of the true partitionπ∗. The prior entropy, that is the mean of the

information required for estimating the true partition, is

H(Π∗) =
1∑

s=0

N(s)

#P
log

#P

N(s)
,

whereN(s) is the number of object pairsp that satisfy the conditionin(p ,π∗) = s. Let Π̂

be an event where a pair of individuals are in the same cluster of the estimated partition

π̂. The posterior entropy, that is the mean of the information not acquired for correct
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estimation, is

H(Π∗|Π̂) =
1∑

s=0

1∑
t=0

N(s , t)

#P
log

N(0 , t) + N(1 , t)

N(s , t)
,

whereN(s , t) is the number of object pairsp that satisfy the conditionin(p , π∗) = s and

in(p , π̂) = t. Consequently,

RIL =
H(Π∗|Π̂)

H(Π∗)
.

The smaller the RIL becomes, the more correctly a partition is estimated. It ranges

from 0 to 1, and becomes0 if and only if the two partitions are completely identical. Other

measures are also possible, such as the ratio of correctly partitioned object pairs used in

the numerical taxonomy literature [11, 22]. However, for the ratio of correctly partitioned

pairs, the lower bound changes according toπ∗. Since this property makes the scale nor-

malization difficult, it is inconvenient to use this ratio. As another example, for the gene

finding problem (the detection of coding regions in given DNA sequences) the correlation

coefficient is commonly used [4]. However, this coefficient becomes infinite when the

denominator is zero. Though this circumstance is avoidable by using approximations, we

do not want to use the approximations since it seems ratherad-hoc. Using the RIL avoids

these problems altogether.
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Chapter 7

Experimental Results and Discussions

Here we present and discuss our experimental results on the dot pattern and vector image

example sets. To begin with, we apply both our LCE method and the benchmark EM

algorithm to the dot pattern example sets. This comparison allows us to confirm that our

method is indeed capable of estimating true partitions. Having established this, we then

apply our method to the more realistic example set of vector-data images.

Table 7.1: The experimental results (means and s.d.’s of the RIL) derived by the rules
acquired by our method and the EM algorithm from the dot pattern example sets

Our Method EM algorithm t-value
Separated 0.067 (0.1473) 0.089 (0.1762) +1.175
Touching 0.161 (0.1747) 0.161 (0.2108) −0.008
Overlapping 0.369 (0.2323) 0.389 (0.2780) +0.667

65
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7.1 Testing Using Dot Patterns

Each row of Table 7.1 shows the experimental results for the three example sets: sepa-

rated, touching and overlapping dot patterns. Each set consists of 100 examples. In the

second and third columns of the table, we show the means (and standard deviations in

parentheses) of the RIL based on the rules acquired by our method and the EM algorithm,

respectively. In the last column, we showt-values, which are measures to compare two

means. When givenn pairs,xi andyi, thet-value is defined as:

t =
(1/n)

∑n
i=1(xi − yi)√

(1/n)
Pn

i=1(xi−yi)2

n−1

.

Since thet-value follows the student’st-distribution withn−1 degrees of freedom, the

mean of thexi’s is greater than that of theyi’s at the significance level of1% if the value

is greater than the99-th percentile of the student’st-distribution,t0.99.

As we noted in Section 6.1, to produce results for the EM algorithm, we supplied

it with significant amounts of information about the domain: the numbers of clusters,

and the fact that dots in a cluster follow a Gaussian distribution with a covariance of

zero. This is a deliberate attempt to produce a realistic comparison for our LCE method,

despite the EM algorithm being primarily designed only for the simple clustering task.

As can be seen from Table 7.1, the partitions estimated by our methods do not suffer

when compared to the EM algorithm in the separated and the overlapping cases and is

almost tie in the touching case. The positivet-values in Table 7.1 indicate that the mean
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Table 7.2: The experimental results (means and s.d.’s of the RIL) derived by the rules that
our original and simplified methods acquired from the dot pattern example sets

Original Method Simplified Method t-value
Separated 0.067 (0.1473) 0.067 (0.1496) +0.143
Touching 0.161 (0.1747) 0.162 (0.1753) +1.150
Overlapping 0.369 (0.2323) 0.371 (0.2321) +1.009

of the RILs in the case of our method is smaller, but all values are less thant0.99=2.365,

so the differences are not statistically significant. The proper conclusion to draw from

these results is not that one method is superior to the other (the methods are designed for

dealing with different types of problems) but that our method is successful in acquiring

knowledge for partitioning just from a given example set.

In Figure 7.1, we then show the RILs of partitions derived by the rules acquired from

different sizes of example sets. For each three types of example sets, we change the size of

example sets from 10 to 1000, and plot the RILs with error-bars. As the sizes of example

sets increase, RILs tend to be decreasing, namely more sophisticated rules are acquired.

The fact indicates that the more examples are available, our LCE techniques obtain the

more useful information that help for producing true partitions.

To investigate the effects of the terms of Equation (4.2) and (4.3), we also carried out

a further test using a simplified version of our method in which no attributes of partitions

are employed. Specifically, we set the functionf2(π) to always be constant at1. Table 7.2

shows how this simplified algorithm compares to our original method (size of example

sets are 100). The positivet-value in this table indicates an advantage for our original
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(a) Separated

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets
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(b) Touching

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets
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(c) Overlapping

Figure 7.1: The RILs of partitions derived by the rules acquired from different sizes of
example sets
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method, but the difference is not statistically significant. We repeated this experiment

with example sets of size from 10 to 1000, and show thet-values in Figure 7.2. For each

example, two partitions are estimated: the one is derived by our original method, and

the other is done by our simplified method. In the figure, the solid lines showst-values

between RILs of these two partitions, and broken lines showt0.99 at each sample size.

However again observed no differences at a significance level of1%. This lack of a clear

result is caused by a specific characteristic of this experimental circumstance. Though

the aim of attributes of partitions is intended to help for acquiring a rule in consideration

of global features of true partitions, the attributes of object pairs used for this experiment

already reflect such features. For example, the seventh and the eighth attributes described

in Section 6.1.1 are based on a minimal spanning tree. Such trees reflect the gestalt

structure of dot patterns (see, e.g., [33]), so global features of true partitions are taken into

consideration, even if attributes of partitions are not employed.

Also, note that the RIL and other measures discussed in Section 6.3 doesn’t directly

evaluate the correctness of estimation, since they are defined on the basis of examining

whether object pairs are correctly partitioned. In general, this kind of measure may fail

to reflect the actual correctness, for examples, when there are dependencies between the

object pairs (we saw an example of this in the final paragraph of Section 4.1). However,

since we do not know of the other types of measures for partitioning, we had nothing but

to adopt such a type of measures. To investigate the effects of attributes of partitions,

we applied a further measure that takes into account the specific global nature of the
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(a) Separated

Figure 7.2: Thet-values between RILs derived by the rules that our original and simplified
methods
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(b) Touching

Figure 7.2: Thet-values between RILs derived by the rules that our original and simplified
methods
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(c) Overlapping

Figure 7.2: Thet-values between RILs derived by the rules that our original and simplified
methods
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(a) Separated

Figure 7.3: Thet-values between RILs derived by the rules that our original and simplified
methods
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(b) Touching

Figure 7.3: Thet-values between RILs derived by the rules that our original and simplified
methods
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(c) Overlapping

Figure 7.3: TheF -ratios between the error (the difference between the number of clusters
in the estimated and the true partitions) for our original and our simplified methods
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partitions: the difference between the number of clusters in the estimated and the true

partitions. Since we adopt an attribute that represents the numbers of clusters, effects of

the attribute will be evaluated by the measure. The Figure 7.3 shows how the simplified

method compares with our original method on the dot pattern example sets when assessed

with this new measure. TheF -ratios in the figure are the ratio of the mean squares of the

simplified method’s estimations to that of the original method. It is known that this value

follows F -distribution with(n1−1 , n2−1) degrees of freedom. In the figure, the solid

lines showF -ratios and the broken lines show99-percentiles ofF -distributions,F0.99.

If the F -ratio is grater thanF0.99, the error of the numbers of clusters estimated by the

original method is smaller at the significance level of 1%. As the numbers of training

examples increase, the errors estimated by the original methods tend to become smaller,

and the differences of the errors are statistically significant for any of three example sets

whose size is grater than 500. This demonstrates an advantage of adopting the term of

Equation (4.3).

For reference and to help with an intuitive comparison, in Figure 7.4 and 7.5, we give

an example of the partitions of two sample dot patterns (both from the touching object

sets whose size is 100). The original (target) partitions are shown in (a) of the figure.

We selected these particular examples because they represent the most difficult example

sets for the EM algorithm (Figure 7.4) and our method (Figure 7.5). That is, these are

the examples for which the partitions produced by the algorithms had maximal RIL. The

figure (b) and (c) show the actual partitions that were derived by the EM algorithm and
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(a) Original Partition

(b) EM Algorithm [RIL = 0.908] (c) Our LCE Method [RIL = 0.308]

The most difficult example set for the EM Algorithm

Figure 7.4: The partition examples from the dot pattern example set
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(a) Original Partition

(b) EM Algorithm [RIL = 0.241] (c) Our LCE Method [RIL = 0.555]

The most difficult example set for Our Method

Figure 7.5: The partition examples from the dot pattern example set
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Table 7.3: The experimental results (means and s.d.’s of the RIL) for the vector-data image
example sets

Original Method Simplified Method t-value
0.430 (0.1242) 0.442 (0.1250) +4.077

by the rules acquired by our LCE method. In our opinion, it seems that each algorithm

has its own strengths and weaknesses.

7.2 Testing Using Vector-data Images

Next, we present the results for the vector-data image example sets. For this example set,

it is highly non-trivial (if possible at all) to provide the authorized algorithm, since we

don’t know mathematical models of the data sources, that are given in the case of dot-

pattern experiments. We therefore simply compare our original method to the simplified

version, producing the results of Table 7.3. In this case, thet-value gives us a clear,

statistically significant result that the means of the original method’s RIL are smaller.

Note that, for the dot pattern example set, we adopted attributes of object or object pairs

that reflected global features of the partitioning. Thus statically significant difference is

not observed. In contrast to this, for the vector-image data, the original method has a

clear advantage, since such attributes were not implemented. For both methods, the mean

value of the RIL is larger than that we found with the dot-pattern example set, but this is

because the image segmentation problem is more realistic, and more difficult. Yet, even

for this practical example set, the RIL between the estimated and true partitions shows that
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our method acquires 57% of the information required for complete partitioning. Though

this result is short for our complete satisfaction, it is enough to feel confident that rules

acquired by LCE methods have sufficient potential, and to put our hopes on improvement

of LCE methods.

As in the previous section, we can again give some examples illustrating the perfor-

mance of the partitioning algorithm. This time we choose the three examples representing

the best, median and worst results of our method. Figure 7.6 shows the true (the upper

of the figure) and then the estimated (the lower of the figure) partitions for each example,

together with the RIL of the estimated result (recall that the lower the RIL, the better the

match between the true and estimated partitions). Note that we depict each cluster as a

set of line-segments surrounded by a thin dashed line and drawn in the same color.

Comparing our results to previous research is complicated by the lack of formal anal-

ysis of the results produced by existing approaches. For example, although segmentation

methods have been applied to vector-data images, the evaluation techniques used to as-

sess these techniques typically just focus on outlining their qualitative merits (as in [13]),

since a standard scheme for performance comparison has not been established. As we

pointed out in Section 2.1, this emphasis on qualitative performance is largely due to

the difficulty of distinguishing testing and training images and the task-specific way that

applications are developed. The alternative of applying existing techniques to our own

image data is also non-trivial since it would require extensive tuning, such as the specifi-

cation of domain knowledge and parameters. It is possible that such tuning could produce
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original partition

estimated partition

(a) The Best Result (RIL = 0.145)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set
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original partition

estimated partition

(b) The Median Result (RIL = 0.412)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set
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original partition

estimated partition

(c) The Worst Result (RIL = 0.701)

Figure 7.6: Examples of true and estimated partitions from the vector-data image example
set
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good partitioning, but our technique retains the significant advantages that it is almost

automated, and can therefore be used by expert and non-expert users alike. It could be

argued that even non-experts can apply many techniques aimed at parameter adjustments,

but we should point out that almost all such adjustment techniques work under an induc-

tive framework. That is, the rules are not deductively given but are learned from given

examples. Though the definition of a loss function is essential for such an approach, for

all former image segmentation methods, this inductive framework and loss function are

not formally defined. It is exactly what our LCE method supplies.

7.3 Discussions

We introduced learning from cluster examples (LCE) as an important new learning task,

and discussed the merits of solving this task. We proposed a solution for the task and

applied this method to object sets in two types of domains. Using a set of dot-patterns we

showed that our method could automatically acquire and fully represent the information

required for acquiring true partitions. We then showed that these results carried over to

the more realistic domain of vector-data images. We can summarize the merits of using

LCE techniques set against the drawbacks shown in Section 2.1 as follows:

• No intuitive derivation of rules, or little explicit knowledge on the structure of the

domain, is required. Instead, designers can just give examples of true partitions that

may indeed fully represent features.



7.3. DISCUSSIONS 87

• Inductive learning algorithms of LCE could formalize rules that can handle excep-

tional features as typical features.

• Users with no knowledge of the target domain, or even of the underlying learning

techniques, can apply acquired rules without laborious parameter tuning. This is

the result of acquiring rules from various examples, so that the rules represent not

only the typical domain features but also their possible variations.

• Statistical stability is clearly superior in the case of using LCE methods. Since

testing examples are strictly separated from training examples, the generalization

ability of rules for unseen object sets will be fairly evaluated. In addition to this,

the number of training examples is also not limited by human cognitive ability.

Even the hundred examples used in this paper represents an advance on the size of

example sets employed in most research to date.

The above merits speak for themselves in demonstrating the potential of solutions by

the LCE techniques.
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Chapter 8

Conclusions

We advocate the task of learning from cluster examples and have discussed here the mer-

its of solving this task. We have proposed a solution method for the task and apply this

method to object sets in two types of domains. One of these is an experimental domain:

the dot-patterns. By our method, the rules that fully represent the information required for

correct partitioning were acquired from an example set. The other is a more realistic do-

main: the vector-data images. The acquired rules have advantages over these obtained in

the previous works. Based on the above, it can be concluded that learning from cluster ex-

amples has sufficient potential, and we feel confident that we stand a chance of improving

the solution method for learning by this method.

We will try to advocate more sophisticated a loss function than the RIL, that indirectly

measures the similarity of partitions by object pairs. If a function that makes it possible

to directly compare partitions is developed, we will be able to more precisely evaluate

89
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the similarities of partitions. And we then develop an algorithm that can acquire not a

criterion, i.e. Equation 4.8, but a rules directly acquiring true partitions themselves.



Appendix A

The Description Length for the Decision

Lists and Example Sets

The total description length of the decision lists and example sets is as follows.

`(ex1 , DL) = log∗(m) +
m∑

i=1

(
`(Ti) + `(S(Ti))

)
.

log∗(·) Rissanen’s code length for natural numbers [23]

m the number of terms in the decision list

`(Ti) code length for the termTi

`(S(Ti)) code length for the example set covered byTi
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· Code length for the example setS [29]:

`(S) = log(#S + 1) + log
( #S

#S+

)

#S the number of examples inS

#S+ the number ofS’s elements whose class is1

· Code length for the termT :

`(T ) =

#Aused∑
j=1

log(
( #A

j

)
+ 1) +

∑
j∈Aused

`(Lj)

#A the number of attribute vector elements

Aused the set of indices specifying literals used in the termT

#Aused the number of literals used in the termT

`(Lj) code length for the literalLj

· Code length for the literalL (for continuous attributes)

The code lengths for the three types of literals are as follows:

`(as < θu) = log 3 + `(θu),

`(θl ≤ as < θu) = log 3 + `(θl) + `(θu),

`(θl ≤ as) = log 3 + `(θl),

where`(θl) and`(θu) are code lengths for the thresholds. These lengths are determined

as depicted in Figure A.1. For example, the half-way point between the minimum and
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Figure A.1: Code length for thresholds

maximum thresholds is encoded with one bit. The quarter-way point is encoded with

three bits. Every time the precision doubles, two more bits are required to encode the

threshold. Itoh’s paper [10] gives a full explanation of this.

· Code length for the literalL (for discrete attributes)

log(d− 1) + log
( d− 1

d′

)

d size of the attribute’s domain

d′ the number of values appears at the right-hand of the literal
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