
Learning From Cluster Examples

Toshihiro Kamishima∗ (mail@kamishima.net) and Fumio Motoyoshi
(f.motoyoshi@aist.go.jp)
National Institute of Advanced Industrial Science and Technology (AIST),
AIST Tsukuba Central 2, 1–1–1 Umezono, Tsukuba, Ibaraki, 305-8568 JAPAN

April 20, 2002

Abstract. Learning from cluster examples (LCE) is a hybrid task combining features of
two common grouping tasks: learning from examples and clustering. In LCE, each training
example is a partition of objects. The task is then to learn from a training set, a rule for
partitioning unseen object sets. A general method for learning such partitioning rules is useful
in any situation where explicit algorithms for deriving partitions are hard to formalize, while
individual examples of correct partitions are easy to specify. In the past, clustering techniques
have been applied to such problems, despite being essentially unsuited to the task. We present a
technique that has qualitative advantages over standard clustering approaches. We demonstrate
these advantages by applying our method to problems in two domains; one with dot patterns
and one with more realistic vector-data images.

Keywords: learning from examples, clustering, dot pattern, image segmentation

1. Introduction

Clustering is a typical grouping task that involves partitioning a given object
set into subsets, such that objects in the same subset are “similar.” (We use
the termobjectsto refer to entities that will be grouped.) Clustering is carried
out based on prespecified knowledge in the form, for example, of preference
potential functions or dissimilarity measures.

In this paper, we advocate the use not of prespecified knowledge, but of
examples for partitioning. That is, we try to acquire a partitioning rule from
an example set consisting of pairs of an object set and a true partition for the
object set. The acquired rule can then be used for finding a true partition for an
unseen object set (not appearing in the training example set). Since the task is
similar to that of learning from examples, which acquires a classification rule
from a given example set, we give the new task the composite namelearning
from cluster examples(LCE).

A solution technique for LCE will be useful for any problem for which
users can easily identify an appropriate partition for a given object set, but
cannot specify explicit knowledge for deriving these partitions in general.
We know of no previous technique that has been developed for this purpose.
To fill a void, clustering techniques have previously been used, but they are

∗ http://www.kamishima.net/

c© 2003Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 3/11/2003; 1:30; p.1

2 T.KAMISHIMA AND F.MOTOYOSHI

not particularly suited to this kind of partitioning. In this paper, we present a
dedicated technique, and discuss its theoretical and practical merits.

We apply our solution to experimental tasks in two domains. One task
involves an artificial domain made up of dot patterns, and the other involves
a realistic domain made up of vector-data images.

Since there are no algorithms designed specifically for the tasks we con-
sider, we pay particular attention to showing the qualitative advantages over
using clustering techniques for partitioning, assessing the appropriateness of
the acquired partitions, and analyzing the behavior of our method in detail.

We proceed as follows. In Section 2, we show the importance of the LCE
task and formalize the problem. In Section 3 and Section 4, we then present
partitioning and learning methods, respectively. In Section 5 these methods
are applied to experimental problems. In Section 6, we discuss LCE. Finally,
Section 7 summarizes our conclusions.

2. Learning from Cluster Examples

In this section, we present an overview of the LCE task, explain the merits of
our solution method, then lay the groundwork for the remainder of the paper
by giving LCE a precise mathematical formalization.

2.1. AN OVERVIEW OF LEARNING FROM CLUSTER EXAMPLES

LCE is a composite task combining features from techniques of learning from
examples and of clustering. To give an overview of LCE, we therefore begin
by reviewing these existing grouping tasks.

Learning from examples is a task involving the acquisition of a rule for
classification from a given example set. Each example is a pair of an object
and a class to which the object should belong. The acquired rule is used to
classify an unseen object into its proper class. A typical technique for this
task in the machine learning field is ID3 (Quinlan, 1986), and the task is
often called discriminant analysis or pattern recognition.

Clustering, on the other hand, is a task that divides a given object set into
clusters that have the properties of internal cohesion and external isolation
(?). The minimum distance or thek-means algorithm is a typical clustering
method in the numerical taxonomy literature. In the machine learning litera-
ture, the task is often calledlearning by observationorunsupervised learning,
and COBWEB (Fisher, 1987) and AutoClass (?) are typical examples of such
a learning system.

We have been developinglearning from cluster examplestechniques (Kamishima
et al., 1995) as an extension of these two known approaches. The aim is not to
find a rule to classify single objects, or a particular clustering, but to find a rule

main.tex; 3/11/2003; 1:30; p.2

LEARNING FROM CLUSTER EXAMPLES 3

(a) An Original Image (b) A Divided Image

Figure 1. Examples of logic circuit diagram images in a vector-data form

for partitioning based on a given example set. Each example in the training
example set is a pair consisting of a set of objects accompanied by a true
partition (a set of clusters) for that set. The acquired rule produced by learning
from this example set is used to estimate a true partition for an unseen object
set. Thus, in contrast to learning from examples, which attempts to find a rule
to classify one object, LCE involves the acquisition of a rule for partitioning
an object set. Although the aim of clustering is to partition an object set, the
partitioning rule produced by LCE is then applicable to any object set from
the same domain. In short, LCE takes the supervisory nature of learning from
examples, and brings it to the task of clustering.

What must be noted here is the difference between supervisory informa-
tion for a learning from examples task and that for a LCE task. Supervisory
information for a learning from examples task is specified by selecting a
proper class from a predefined set of classes. On the other hand, in the case of
the LCE task, only supervisory information regarding which objects should
be grouped is provided, and there is no notion of a predefined set of classes.

2.2. WHY LCE IS IMPORTANT

We will now describe some examples that fit the LCE model. Typically, these
will be examples in which a true partition for any object set is easy for a
user to specify or identify, while an overall set of rules for finding these
partitions is very difficult for a user to specify concretely and explicitly. A
prime example of such a problem is image segmentation.

To explain the image segmentation task, we give an example of a typical
problem involving the understanding of diagrammatic images. Figure 1(a)
shows an image of a logic circuit diagram in vector-data form. The vector-
data is a form that represents images by collections of line-segments. In the
understanding process for this image, a set of line-segments composing im-
ages are first divided into a partition, so that each cluster depicts a primitive

main.tex; 3/11/2003; 1:30; p.3

4 T.KAMISHIMA AND F.MOTOYOSHI

symbol. This operation is generally calledsegmentationin the machine vi-
sion literature, and is a very common technique. An appropriate treatment of
the image in Figure 1(a), for example, would be to partition it into clusters
with each depicting one part of a logic circuit diagram. Such a partition is
illustrated in Figure 1(b), where the the original image has been separated by
thin broken lines.

Consider the performance of this segmentation task by applying a cluster-
ing technique. The input to the clustering algorithm is a set of feature values
of line-segments; for example, their length or the connectivities among them.
Then, to apply a clustering algorithms, one also has to specify knowledge,
such as a potential function or a dissimilarity measure. It is, unfortunately,
difficult to specify such knowledge, because it is hard to detect intuitive cor-
respondence between feature values and a notion of logic diagram parts. Even
in such a case, it is easy to give the desired partitions themselves. We therefore
suppose that it is useful to derive partitioning rules from partition examples.
This is why we consider the LCE task important.

The development of successful techniques for LCE will contribute to the
progress of research in any field in which the partitions that should be derived
are clear, but rules to derive such partitions are not. The technique may also
be applicable to problems such as knowledge transmutation by agglomeration
in multistrategy learning (Michalski, 1993), and the identification of coding
regions in DNA (Burset and Guigó, 1996). The rest of this paper presents our
algorithm for LCE.

2.3. FORMALIZATION OF LCE

This section formally states the task of learning from cluster examples. This
task can be visualized as in Figure 2, and consists of two major stages: a
learning stage and a partitioning stage. In the learning stage (Figure 2, left),
the rule for partitioning is acquired from a training example set. In the parti-
tioning stage (Figure 2, right), based on the acquired rule, the true partition
of an unseen object set is estimated.

Previously herein, for simplicity, we have described an example as a pair
of an object set and a true partition for that set. Strictly speaking, an object
set should be substituted by an object set description,(OI , F (OI)), which
is an object set accompanied by its features. We hereafter strictly define
two distinct terms: the object set description and the object set. An object
set,OI , is a set of entities that will be grouped, and includes#OI objects;
{o1

I , o
2
I , . . . , o

#OI
I }. The object set features,F (OI), is a formal representation

of an object set. We will describe the details of this later.
Each example is a pair of an object set description and its true partition,π∗I ,

and is denoted by〈(OI , F (OI)), π∗I 〉. An example set,EX, includes#EX

main.tex; 3/11/2003; 1:30; p.4

LEARNING FROM CLUSTER EXAMPLES 5

Figure 2. An illustration of learning from cluster examples

examples:

{〈(O1, F (O1)), π∗1〉, 〈(O2, F (O2)), π∗2〉, . . . , 〈(O#EX , F (O#EX)), π∗#EX〉}.
The partition,πI , includes#πI clusters;{C1

I , C2
I , . . . , C#π

I }, and the cluster
CJ

I is a subset ofOI , such that these clusters are mutually disjoint and every
object is an element of exactly one cluster.

A common formal representation of an object within an object set is the
attribute vector. For our LCE technique, we use a generalized form of this, and
call it thecomposite attribute vector form. In the composite attribute vector
form, object set features are described by the following three types of attribute
vectors.

Attributes of Objects: A(o)=(a1(o), a2(o), . . . , a#A(o)(o))
This type of attribute, assigned to each constituent object, is the same
one adopted in thek-means algorithm and many other learning algo-
rithms. In the task shown in Figure 1, for example, the length or angle of

main.tex; 3/11/2003; 1:30; p.5

6 T.KAMISHIMA AND F.MOTOYOSHI

each line-segment can be represented by this type of attribute. We denote
the attributes of the objecto by A(o). A(o) consists of#A(o) attributes.
#A(o) is invariant across all objects.

Attributes of Object Pairs: A(p)=(a1(p), a2(p), . . . , a#A(p)(p))
To apply the minimum distance clustering technique, for example, an
object set is represented by a dissimilarity matrix, whose elements are
dissimilarities between two constituent objects. We generalize this idea
so that object pairs have descriptive attributes. Each entry in the dis-
similarity matrix is an attribute that represents a relationship between
two objects. In the task in the Figure 1, the difference in angles or the
connectivity between two line-segments can be represented by this type
of attribute. Specifically, let a pair of objectsoi andoj be denoted by
pij , and letP be the set of all possible pairs of objects, so thatP has
#P (=#O(#O+1)/2) pairs. We denote the attributes of pairsp by
A(p). A(p) consists of#A(p) attributes.

Attributes of Partitions: A(π)=(a1(π), a2(π), . . . , a#A(π)(π))
The values of the above two types of attributes are fixed, once an object
set is specified. On the other hand, the values of a third type of attribute
are not fixed until some partition is specified along with an object set.
That is to say, attributes of partitions are given as functions that output
attribute values if any partitions are given. This type of attribute repre-
sents characteristics of entire partitions. In the task in the Figure 1, for
example, numbers of diagram parts can be represented. We denote the
attributes of partitions byA(π). A(π) consists of#A(π) attributes.

In summary, object set features,F (O), are described by using sets of the
above attribute vectors,{A(o)}, {A(p)}, andA(π), where{A(o)} and{A(p)}
are sets of all value vectors of constituents inO andP , respectively.

Owing to restrictions of our current implementation, there are limitations
on domains of attributes upon application of our LCE implementation. The
attributes of objects and of object pairs must take as their domains either con-
tinuous numbers or discrete values (as in Quinlan’s ID3 (Quinlan, 1986)). The
attributes of partitions must be expressed as real numbers from the domain
[0, 1].

3. The Partitioning Method

Although a partitioning rule is first learned and then the rule is applied for
partitioning, a clear description of our method is best achieved by first estab-
lishing what it actually means to produce a good partition. We therefore begin
by describing our partitioning method. As described above, the partition,π̂U ,

main.tex; 3/11/2003; 1:30; p.6

LEARNING FROM CLUSTER EXAMPLES 7

is estimated by applying the rule acquired at the learning stage, when given
the unseen object set description,(OU , F (OU)). For simplicity, the subscript
U is omitted in this section.

We advocate the LCE-Maximum A Posteriori (LCE-MAP) approach for
estimation of partitions. Letπ be an arbitrary partition for an unseen object
set, andπ=π∗ be an event such thatπ is exactly the true partition. As the most
plausible partition, the LCE-MAP approach adopts the maximum a posteriori
estimator; namely, the partition that maximizes the joint probability ofπ=π∗
and a given object set feature. The joint probability is:

Joint Probability: Pr [π=π∗, {A(o)}, {A(p)}, A(π)]. (1)

The Joint Probability (1) is hard to calculate directly because it is composed
of so many elements. We therefore decompose it into the product of the three
terms:

Pr [{A(o)}, {A(p)}], (2)

Prior Probability: Pr [π=π∗|{A(o)}, {A(p)}], (3)

Pr [A(π)|π=π∗, {A(o)}, {A(p)}]. (4)

In Equation (4), we make the assumption that value vectorsA(π) and{A(o)}, {A(p)}
are conditionally independent givenπ=π∗. This assumption is not always
true, but it is feasible to choose attributes that are as independent as possible.
We rewrite this equation simply as the probability density:

Partition Density: Pr [A(π)|π=π∗]. (5)

Since Equation (2) is constant for any choice of partition, this term can be
ignored in terms of maximization of the Joint Probability (1). We therefore
describe the procedure to calculate the other two terms: the Prior Proba-
bility (3) and the Partition Density (5). Figure 3 illustrates an overview of
the procedure. The input is the object set description, that is an object set,
O, and its feature,F (O) (bottom of the Figure). At Step A1 in the Figure,
O is partitioned intoπ. The Prior Probability (3) and the Partition Den-
sity (5) are then calculated through procedures B1–B4 and C1–C2, respec-
tively. Finally, these terms are multiplied, and the product is proportional to
the Joint Probability (1).

To calculate Prior Probability (3), we show how it can be manipulated into
a more manageable form through Steps B1–B4. For eachpij in P (a set of
all the object pairs), repeat Steps B1–B3. At Step B1, pick up three value
vectors,A(oi), A(oj), andA(pij), from {A(o)} and {A(p)}. These three
vectors are combined into one vector,AC(pij), at the next step (B2) by the
method shown in Section 3.1. At Step B3,pij andAC(pij) are applied to the

main.tex; 3/11/2003; 1:30; p.7

8 T.KAMISHIMA AND F.MOTOYOSHI

Figure 3. An overview of the calculation procedure of the Joint Probability (1)

function
f1(pij , AC(pij)) = Pr [in(pij , π∗)=1 |AC(pij)], (6)

where the functionin(pij , π) is 1 if both oi andoj are in the same cluster
of the partitionπ, and0 otherwise. The functionf1 outputs the conditional
probability of the event that two objectsoi and oj are in the same cluster
of the true partition givenAC(pij). The learning procedure for the function
will be explained in Section 4.1. After the#P values off1(pij , AC(pij)) are
derived, these values are multiplied as follows:

∏

p∈P+

f1(p,AC(p))×
∏

p∈P−
f̄1(p,AC(p)), (7)

whereP+ is a subset ofP consisting of all the pairs satisfying the con-
dition in(p, π)=1, P− is its complementary set, and̄f1(p,AC(p)) = 1 −

main.tex; 3/11/2003; 1:30; p.8

LEARNING FROM CLUSTER EXAMPLES 9

f1(p,AC(p)). It can be shown that the Equation (7) is proportional to the
Prior Probability (3). We will give the rationale for this in the Section 3.2.

We turn now to the calculation of the Partition Density (5), achieved through
Step C1 and C2. At Step C1, derive the value vectors ofA(π) when theO
is partitioned into theπ. At the next step (C2), the Partition Density (5) is
calculated by the function

Partition Density: f2(A(π)) = Pr [A(π)|π=π∗].

This functionf2 outputs the conditional probability density of the attribute
value vectors ofA(π) given π=π∗, an eventπ is exactly the true partition.
We will describe the learning method for the function in Section 4.2.

Consequently, to achieve our overall goal of maximizing the Joint Proba-
bility (1), all we have to do is to maximize the product of Equation (7) and
the Partition Density (5):

Criterion: f2(A(π))×
∏

p∈P+

f1(p,AC(p))×
∏

p∈P−
f̄1(p,AC(p)). (8)

We then describe our procedure to search for the most plausible true par-
tition; that is, achieving the maximum of Criterion (8). According to the
literature (e.g., (?)), the number of possible partitions is

#O∑

j=1

(
1
j!

j∑

i=0

(−1)j−i
(

j
i

)
i#O

)
,

and this number increases exponentially according to the number of objects.
Therefore, finding the optimal partition is not tractable in general, and we
rely on the greedy search algorithm in Figure 4 to find a partition that may be
locally optimal. In this algorithm, an initial partition is iteratively changed by
applying modification operations. In each iteration, the operation that max-
imizes Criterion (8) is applied. This iteration stops when no operation im-
proves Criterion (8).

The details of this algorithm are shown in Figure 4. In the figure, Eq7(π)
and PD5(π) denote the values of Equation (7) and Partition Density (5) when
O is partitioned intoπ, respectively. The algorithm begins by creating an ini-
tial partition whose constituent clusters are made up of only one object, then
refines this partition so as to maximize Criterion (8). This refinement is done
by applying two types of operations: amerge, which merges a pair of clusters,
and amove, which moves one element from one cluster to another. When no
partition that achieves a larger value of Criterion (8) is found, this algorithm
stops, then outputs the current partition as the most plausible true partition.
Note that the basic role of the procedureEVALUATION is to calculate a value
of Criterion (8). The value is used to compare the current best partition with

main.tex; 3/11/2003; 1:30; p.9

10 T.KAMISHIMA AND F.MOTOYOSHI

the procedureMAIN

t := 0, π0 := {C = {o}, ∀o ∈ O} — create an initial partition
if (PD5(π0) > 0) then{

f := true, E0 := PD5(π0)× Eq7(π0)
} else{

f := false, E0 := Eq7(π0)
}
start:

t := t + 1, Et := Et−1

forall (CA ∈ πt−1, CB ∈ πt−1, CA 6= CB) {
— check for applying themergeoperation

π′ := πt−1 − CA − CB + {CA ∪ CB}, call EVALUATION (π′)
}
if (f = true) {

forall (CA ∈ πt−1, CB ∈ πt−1, CA 6= CB) {
— check for applying themoveoperation

forall (o ∈ CA) {
π′ := πt−1 − CA − CB + {CA − {o}}+ {CB ∪ {o}}
call EVALUATION (π′)

}
}

}
if (f = false ∨ Et 6= Et−1) then gotostart

— continue until improvement is not feasible
outputπt−1

end

the procedureEVALUATION (π′)
if (f = false) then{

if (PD5(π′) 6= 0) then{ — check PD5 is non-zero
f := true, πt := π′, Et := PD5(π′)× Eq7(π′)

} else if (Eq7(π′) > Et) then{
πt := π′, Et := Eq7(π′) — ignore PD5 if PD5 is zero

}
} else if (PD5(π′)× Eq7(π′) > Et) then{

πt := π′, Et := PD5(π′)× Eq7(π′)
}
return

Figure 4. Our algorithm for searching an true partition

main.tex; 3/11/2003; 1:30; p.10

LEARNING FROM CLUSTER EXAMPLES 11

the new partition generated by applying a merge or a move operation to the
former. TheEVALUATION procedure treats separately the condition where
Partition Density (5) has been zero from the beginning of the algorithm,
because the product becomes zero even if the value of Equation (7) is non-
zero. Therefore, while this condition holds (The flag,f , in the Figure holds
this condition),EVALUATION simply returns the value of Equation (7), and to
avoid infinite loop, the moving operation is not applied. Once a partition for
which Partition Density (5) is not zero is found, this special case is no longer
invoked.

3.1. METHODS TOCOMBINE ATTRIBUTE VECTORS

We here describe the method to combine three value vectors,A(oi), A(oj),
andA(pij), into AC(pij). This method is used in Step B2 of Figure 3, and in
the learning process forf1(pij , AC(pij)).

Our combination method is defined so as to be invariant under the ordering
of indices, so that the value of the combined attributeAC(pij) is always equal
to AC(pji). To produce such combined vectors, we copy all the values of
A(pij) into the top of the combined vector. Additional elements are then con-
catenated to this combined vector by considering, one by one, the elements
of the original vectorsA(oi) andA(oj). Thes-th elements of these original
vectors,as(oi) and as(oj), are merged and added to the combined vector
according to the following rules:

− If these twos-th elements take continuous values, the smaller value is
added as an element of the combined vector, and the larger value is added
as the subsequent element. That is, if the smaller value is added to the
combined value as thet-th element, the larger value would be added as
the(t + 1)-th element.

− If these twos-th elements take discrete values, the values are merged
into one and added into the combined vector. If the number of possible
values for the original attribute isd, the merged attribute can take one of
the possibled(d + 1)/2 values. For example, if the possible values are
“yes” and “no”, the merged value can take one of the values “yes–yes”,
“yes–no”, or “no–no”.

As an example, consider the value vectorA(pij) with two elements, the first
discrete and the second continuous, and the vectorsA(oi) andA(oj), both of
which have two elements, the first continuous and the second discrete. Given
the attribute valuesA(pij) = (yes, 100), A(oi) = (50, yes), andA(oj) =
(10, no), the combined attributeAC(pij) would be(yes, 100, 10, 50, yes-no).

main.tex; 3/11/2003; 1:30; p.11

12 T.KAMISHIMA AND F.MOTOYOSHI

3.2. WHY EQUATION (7) IS PROPORTIONAL TOPRIOR PROBABILITY (3)

In this section, we explain why Equation (7),

∏

p∈P+

f1(p,AC(p))×
∏

p∈P−
f̄1(p,AC(p)), (7)

is proportional to Prior Probability (3),

Pr [π=π∗|{A(o)}, {A(p)}]. (3)

We first give an intuitive explanation. Equation (7) expresses the probabil-
ity assigned to a necessary condition ofπ=π∗, an event that true partition
π∗ is equivalent to the partitionπ. The condition is that any object pairs
belonging to the same cluster ofπ∗ must also belong to the same cluster
of π, and vice versa. Therefore, in Equation (7),f1(p,AC(p)) is multiplied
if in(π, p) = 1, otherwisef̄1(p,AC(p)) is multiplied. However, this is not
independent on whether object pairs belong to the same cluster. For example,
if pij andpik are in the same cluster,pjk must be in the same cluster. Since
some probability is assigned to such impossible events in the formulation
of Equation (7), the equation has to be divided by a proper normalization
term in order to make the total sum of probabilities equal to one. However,
since this term is, fortunately, constant for any choices ofπ, Equation (7) is
consequently proportional to Prior Probability (3).

Equation (7) is a product of conditional probabilities given distinct events,
and so it does not strictly express the probability of the above necessary con-
dition. To compensate for this shortcoming, we then give a more sophisticated
rationale, based on Dempster & Shafer’s rule of combination (?) (DS rule, for
short). We will describe this DS rule before moving to a full explanation.

The DS rule is used for combining probabilities based on different pieces
of evidence. Lete be an event,Ea be an event set, andEAll be the set of
all possible events. LetP (EAll) be the power set ofEAll (i.e.,{Ea : ∀Ea ⊆
EAll}), andAx be an evidence.Pr [Ea(Ax)] denotes the probability that one
of the events inEa occurs based on the evidenceAx, and is called abasic
probability. Basic probabilities satisfy these conditions:

Pr [Ea(Ax)] ≥ 0, Pr [∅(Ax)] = 0,
∑

Ea∈P (EAll)

Pr [Ea(Ax)] = 1.

For example, when there are two events,e1 ande2, EAll = {e1, e2}, P (EAll) =
{E1=∅, E2={e1}, E3={e2}, E4={e1, e2}}, and basic probabilities are as-
signed to eachE1 – E4. Consider the simple case that there are two basic
probability sets based on each of evidencesA1 andA2, and each of these sets
consists of basic probabilities of the eventsE1 – E4. According to the DS

main.tex; 3/11/2003; 1:30; p.12

LEARNING FROM CLUSTER EXAMPLES 13

π1 =(o1, o2, o3, o4) π2 =(o1)(o2, o3, o4) π3 =(o2)(o1, o3, o4)
π4 =(o3)(o1, o2, o4) π5 =(o4)(o1, o2, o3) π6 =(o1, o2)(o3, o4)
π7 =(o1, o3)(o2, o4) π8 =(o1, o4)(o2, o3) π9 =(o1)(o2)(o3, o4)
π10=(o1)(o3)(o2, o4) π11=(o1)(o4)(o2, o3) π12=(o2)(o3)(o1, o4)
π13=(o2)(o4)(o1, o3) π14=(o3)(o4)(o1, o2) π15=(o2)(o3)(o1)(o4)

Figure 5. An example of all the possible partitions for the object set:{o1, o2, o3, o4}

rule, the probability of the event setE2 based on these two evidences is:

Pr [E2({A1, A2})] =
Pr [E2(A1)]Pr [E2(A2)]+Pr [E2(A1)]Pr [E4(A2)]+Pr [E4(A1)]Pr [E2(A2)]

1− (Pr [E2(A1)]Pr [E3(A2)] + Pr [E3(A1)]Pr [E2(A2)])

(the probability assigned toE1=∅ is omitted). The numerator of the above
equation denotes the sum of all the basic probabilities such that it leads toE2.
For example, since theE2 ∩ E4 exactly equalsE2, Pr [E4(A1)]Pr [E2(A2)]
andPr [E2(A1)]Pr [E4(A2)] are added to the numerator. Note thatE4 ∩ E4

includesE2, but it does not exactly equalE2, thusPr [E4(A1)]Pr [E4(A1)]
is not added. On the other hand, the denominator is1 minus the sum of all
the basic probabilities that will lead to the empty set. For example, since
E2 ∩ E3 = ∅, Pr [E2(A1)]Pr [E3(A2)] andPr [E3(A1)]Pr [E2(A2)] appear
in the denominator.

Strictly speaking, the premises and semantics of the probabilities manip-
ulated by the DS and the Bayesian theories are different. However, because
it is well known that the DS theory can be considered as a generalization of
the Bayesian theory, we introduce the DS theory. To introduce the DS theory,
we consider that the basic probability based on an evidence is equal to a con-
ditional probability, given the evidence. Grounded on this idea, Prior Proba-
bility (3) can be considered as a basic probability of an eventπ=π∗, based
on the evidence that a set of attribute value vectors{A(o)} and{A(p)} are
simultaneously observed. The functionf1 can also be interpreted as a ba-
sic probability ofin(pij , π∗)=1, based on the evidence that the value vector
AC(pij) is observed. We can now derive the Prior Probability (3) by combin-
ing f1s according to the DS rule. We describe the details of this combination
scheme below.

First, Prior Probability (3) and the functionsf1 are probabilities assigned
to different kinds of events; namely Prior Probability (3) is the probability of
π=π∗, andf1 is that ofin(p, π∗) = 1. We present the common set of events
to which these two events can be converted.

Let ΠAll be the set of all possible partitions. For example, consider the
object setO={o1, o2, o3, o4}. For this set,ΠAll is the set of fifteen partitions

main.tex; 3/11/2003; 1:30; p.13

14 T.KAMISHIMA AND F.MOTOYOSHI

shown in Figure (5), where the objects in parenthesis form one cluster. We
then denote a special partition set byΠp: a set of all the partitions accord-
ing to which the object pairp is in the same cluster. For example,Πp12 is
{π1, π4, π5, π6, π14}; all five partitions satisfy the condition thato1 ando2

are in the same cluster, and no other partitions can satisfy this condition.
Furthermore, letΠp=π∗ be the event set such that one of the partitions inΠp

is the true partition. TheΠ=π∗ corresponds to the event setEa of the above
examples. We then interpret both of the events,in(p, π∗)=1 andπ=π∗, as
these event sets.

Let us focus on the functionf1. By definition, the eventin(pij , π∗)=1
is equivalent to the event setΠpij=π∗. SinceAC(p) is derived fromA(oi),
A(oj), andA(pij), the functionf1 can be interpreted as:

{
Pr [Πpij=π∗({A(pij), A(oi), A(oj)})] ≡ f1(pij , AC(pij)),
Pr [Π̄pij=π∗({A(pij), A(oi), A(oj)})] ≡ f̄1(pij , AC(pij)), (9)

wherePr [Πpij=π∗({A(pij), A(oi), A(oj)})] denotes the basic probability of
the event setΠpij=π∗ based on the evidence{A(pij), A(oi), A(oj)}, and
Π̄pij = ΠAll − Πpij . We assign a probability of zero to any event set except
for the above two. For example, let us focus on the evidence thatA(p12),
A(o1), andA(o2) are observed. The basic probability set based on the evi-
dence consists of215 probabilities. Among this probability set, there are two
event sets to which non-zero probabilities are assigned,

Pr [Πp12=π∗({A(p12), A(o1), A(o2)}] = f1(p12, AC(p12))
Πp12 = {π1, π4, π5, π6, π14},

Pr [Π̄p12=π∗({A(p12), A(o1), A(o2)}] = f̄1(p12, AC(p12))
Π̄p12 = {π2, π7, π8, π9, π10, π11, π12, π13, π15},

(10)

and there are215 − 2 zero-probabilities. Such basic probability sets can be
drawn for every pair inP (a set of all object pairs), and#P probability sets
are thus constructed.

In contrast, the eventπ=π∗ corresponds to the event set,{π}=π∗, where
the partition set consists of theπ only.

Now, both Prior Probability (3) and the functionf1 are interpreted as
the basic probability of common event sets. We then derive Prior Probabil-
ity (3) by combiningf1s. By definition, observingA(oi), A(oi), andA(pij)
for everypij in P is equivalent to observing{A(o)} and{A(p)} simulta-
neously. The Prior Probability (3) can therefore be derived by combining
these probability sets based on#P distinct evidences. According the DS
rule, the numerator should be a sum of the probabilities that are assigned
to the combinations of event sets of which the intersection is just equal to
{π}=π∗. To find such a combination, all we have to do is choosing either
Πp or Π̄p, which includes the target partitionπ for eachp in P , because any

main.tex; 3/11/2003; 1:30; p.14

LEARNING FROM CLUSTER EXAMPLES 15

event sets with zero-probability can be omitted. Since no other intersection
of combinations leads to{π}=π∗, the numerator of the combined probability
becomes Equation (7). For example, consider deriving the basic probability
of the event set{π4}=π∗. Since there are six object pairs, six probability
sets are generated. The numerator of the combined probability assigned to
the event set{π4}=π∗ would be

f1(p12, AC(p12))f1(p14, AC(p14))f1(p24, AC(p24))×
f̄1(p13, AC(p13))f̄1(p23, AC(p23))f̄1(p34, AC(p34)), (11)

since{π4} = Πp12 ∩Πp14 ∩Πp24 ∩ Π̄p13 ∩ Π̄p23 ∩ Π̄p34 .
On the other hand, the denominator of the combined probability has the

useful property of being constant for any possible partition. This is because
the combination of event sets of which the intersection leads to an empty set is
independent with respect to choice ofπ. Note that such combinations leading
to empty sets correspond to the impossible events described in the intuitive
explanation given at the beginning of this section.

From what has been discussed above, we can conclude that Prior Proba-
bility (3) is proportional to Equation (7).

4. The Learning Method

We present the method for acquiring the two functionsf1(p, AC(p)) and
f2(A(π)) from the given example set,EX, in the learning stage.

4.1. ACQUISITION OF THEFUNCTION f1(p, AC(p))

As described in Section 3, the functionf1 outputs a conditional probability
of the eventin(pij , π∗)=1 givenAC(pij). A decision list(Yamanishi, 1992)
is used to express the functionf1. Briefly, a decision list can be defined as
follows.

Let T be a term that is the conjunction of literalsL. The literalL is a
logical function that can take the binary valuestrue or false when an attribute
valuesa is given, as follows:

− for attributesa that take continuous values, the three possible forms of
the literal are(θl ≤ a), (θl ≤ a < θu), and(a < θu), whereθl andθu

are proper threshold values. Such a literal takestrue whenever the value
a satisfies the condition specified by the literal.

− for attributesa that take discrete values from some setV , a literal has the
form (a = v1 ∨ v2 ∨ · · · ∨ vd′), wherev1, . . . , vd′ are elements of the set
V . This literal takestrue whenever the value ofa is one ofv1, . . . , vd′ .

main.tex; 3/11/2003; 1:30; p.15

16 T.KAMISHIMA AND F.MOTOYOSHI

Figure 6. An example of a decision tree

Decision lists are defined as a pairing of an ordered term list〈T1, T2, . . . , Tm−1, true〉
and a probability list〈Pr 1, Pr 2, . . . , Pr m〉, wheretrue is a term that always
outputstrue. Specifically, when the unseen value vectorAU is applied to a
term list in the orderT1, T2, . . . , true, if Tk is the first term that outputs true,
the decision list outputs the value of the correspondingPr k as the condi-
tional probabilityPr [in(pij , π∗)=1|AC(pij)]. An example of a decision list
is shown in Figure 6. This decision list is designed for the attribute vector
of which the first element is continuous and of the second is discrete. Sup-
pose that the attribute vector(0.9, "X") is applied. The second attribute value
satisfies the first literal ofT1, (a2="X" ∨ "Z"), but the first value does not
satisfy the second literal,(a1 < 0.6), thus theT1 becomesfalse. The vector
next applied to the second term,T2=(0.7 ≤ a1) , the term is then satisfied.
Thus thePr2 =0.2 is outputted as the conditional probability.

We note here an explanation for adopting decision lists rather than de-
cision trees. First, Pagallo and Haussler (Pagallo and Haussler, 1990) have
pointed out that the size of the decision trees tends to increase drastically
when the concept to be learned is disjunctive. Secondly, the size of the ex-
ample set drastically decreases, since the decision trees are usually acquired
by a so-called divide-and-conquer procedure and the example set is divided
whenever a new node is created. This property weakens stochastic stability.

To acquire the functionf1, examples of pairs of an observed value vec-
tor and a target value (AC(pij) and in(pij , π∗); a common format for the
technique of learning from examples) are required. We therefore transform
a given example setEX into a set of examples in this form. Each exam-
ple is generated from an object pair in an object set fromEX. Thus, the
number of elements in the transformed example set is the sum of the object
pairs in the training example set; i.e.,#ex1 =

∑#EX
I=1 #PI . We denote a

transformed example by(Ax, cx). TheAx is the combined attribute vector
AC(pij) where the objectsoi and oj and object pairspij are assumed to

main.tex; 3/11/2003; 1:30; p.16

LEARNING FROM CLUSTER EXAMPLES 17

the procedureSEARCHING

example setS := ex1, term no. i:=0
dicision listDL := 〈〉, conditional probabilityPR := 〈〉
do{

i := i + 1
the number of updating timesj := 0
j-th updated termT j

i := true
do{

j := j + 1
Let LB be the literal maximizing the evaluation function and

GB be the function value for theLB †
if (GB ≤ 0) then{

T j
i := T j−1

i , gototerm end
}
T j

i := T j−1
i ∧ LB

} until(every classes of elements inS(T j
i) is all 0 or all 1)

term end:
if (T j

i = true) then gotolist end
Add T j

i to DL andPr (S(T j
i)) to PR ††

S := S − S(T j
i)

} until(every classes of elements inS is all 0 or all 1)
list end:
Add true to DL andPr (S) to PR

the procedurePRUNING

total code length̀ := `(ex1, DL), the number of termsm := i + 1
while(m > 1) {

S′ := S(Tm) ∪ S(Tm−1)
DL′ := 〈T1, . . . , Tm−2, true〉, PR′ := 〈Pr 1, . . . Pr m−2, Pr (S′)〉
`′ = `(ex1, DL′)
if (` ≤ `′) then gotonoprune
DL := DL′, PR := PR′, m := m− 1, ` = `′

}
noprune:
outputDL, PR
end

Figure 7. Our algorithm for searching decision lists

come from the same example〈(OI , F (OI)), π∗I 〉. (The combination method
is described in Section 3.1.) Here the classcx takes the valuein(pij , π∗I), so
thecx becomes0 or 1. The example setex1 can be simply represented by a
form of {(A1, c1), (A2, c2), . . . , (A#ex1 , c#ex1)}.

main.tex; 3/11/2003; 1:30; p.17

18 T.KAMISHIMA AND F.MOTOYOSHI

We next describe the algorithm to estimate the functionf1 from the trans-
formed example set,ex1. Our algorithm for acquiring the above decision lists
is described in Figure 7. This algorithm finds the most probable decision list
based on Rissanen’s MDL (Minimum Description Length) principle (Rissa-
nen, 1983), which has been successfully adopted in learning from examples
techniques (Quinlan and Rivest, 1989; Wallace and Patrick, 1993). This prin-
ciple, which selects the best model from a given set of candidate stochastic
models, is stated as “select the model in the observed data that permits the
shortest encoding both of the observations and the model.” Grounded on this
principle, we formalize a set of stochastic models representing the conditional
probability functions and specify a coding scheme for this set. In Figure 7,
we show the procedure for finding the decision list that permits the shortest
code length, and the coding schemes of the decision lists are summarized in
Appendix A. We make some remarks related to Figure 7, below.

This algorithm is composed of two procedures:SEARCHING andPRUN-
ING. The former is the procedure for finding a decision list by repeatedly
adding terms so as to achieve the shortest code length, then removing the
examples satisfied by the list. In the latter procedure, the acquired decision
list is polished.

We first discuss the evaluation functionGB and the literalLB at the mark†
in Figure 7. This evaluation function is designed to find the term that is useful
for achieving the shortest code length. LetS(T1) be the subset of the current
example setS that consists of elements that satisfy the condition specified by
the termT1. Let #S(T1) be the number of elements inS(T1), and`(S(T1))
be the code length forS(T1). Assume two termsT1 andT2 that satisfy the
conditionS(T1) ⊇ S(T2). If the condition

`(T1) + `(S(T1))
#S(T1)

>
`(T2) + `(S(T2))

#S(T2)

is satisfied, the evaluation function is

G(T1, T2) =
(
`(T1)+`(S(T1))

)−
(
`
(
T2

)
+`(S(T2))+`

(
S(T1)−S(T2)

))
,

and otherwise0, where`(T1) is the code length forT1. TheLB is the literal
that maximizes the evaluation functionG(T j−1

i , T j−1
i ∧L) over all literalsL

that satisfy the conditionS(T j−1
i) ⊇ S(T j−1

i ∧ L). GB is the output of the
function at that time.

Next, we comment onPr (S(T j
i)) calculated at the mark††. Because we

adopt the coding scheme of the example sets in (Wallace and Patrick, 1993),
Pr (S(T j

i)) is defined as

#S+(T j
i) + 1

#S(T j
i) + 2

,

main.tex; 3/11/2003; 1:30; p.18

LEARNING FROM CLUSTER EXAMPLES 19

Figure 8. An example of a regression tree

whereS+(T j
i) is composed of the elements inS(T j

i) whose class labels are
1. Details about the code length of decision lists and example sets are shown
in Appendix A.

4.2. ACQUISITION OF THEFUNCTION f2(A(π))

We next describe the method for acquiring the functionf2 that is the condi-
tional probability density ofA(π) given the eventπ=π∗.

Before turning to an explanation of our algorithm, it is helpful to de-
scribe theregression trees(?), since we employ them to represent the density
function. An example of a regression tree is shown in Figure 8. The tree
in this figure has terminal and non-terminal nodes. Each non-terminal node,
represented by a rectangle, has one threshold, one index that specifies which
element ofA(π) should be compared, and two branches connecting it to other
nodes. In addition, each terminal node, represented by a rounded rectangle,
has a probability density value. When a fixed value vectorA(π) is given, the
proper probability density value is found by recursively descending through
the regression tree to a terminal node, as follows. First, the vector is compared
to the threshold specified at the root node of the tree (for the specific index
indicated at the node). If the value is smaller than the threshold, then the left
branch of the node is descended. Otherwise, the right branch is descended.
If the next node in the tree is also non-terminal, the process of comparing
the specified attribute value and the threshold at the node is repeated until a
terminal node is reached. At a terminal node, the proper probability density
value is simply the value specified by the node. For example, suppose that the
vector(0.3, 0.5) is applied to the regression tree in Figure 8. The first value
of the vector is compared to a threshold of0.5 at the root node (labelednn1).
Since the value is smaller than the threshold, the left branch is traced and the
nodenn2 is found. The nodenn2 is also non-terminal, so the second value

main.tex; 3/11/2003; 1:30; p.19

20 T.KAMISHIMA AND F.MOTOYOSHI

of the vector is then compared to the threshold0.1. As a result, we reach the
terminal nodetn2. This gives a value of0 as the target probability density0.

We next describe the method for acquiring the regression trees expressing
the functionf2. To derive the density function, it is required that the exam-
ple set is composed of attribute value vectors. Therefore, we transform the
original training example set,EX, into this form. Recall that the setEX is
composed of examples of object set descriptions(OI , F (OI)) with their true
partitionsπ∗I . For each example, we calculate the value vectorsA(π∗I) when
OI is partitioned intoπ∗I . As a result,#EX vectors are derived, and we refer
to the set of these vectors as the transformed example set,ex2. Since each
example of theex2 follows the probability density,Pr [A(π)|π=π∗], we can
estimate the functionf2(A(π)) from theex2.

Now, all we have to do is estimatingPr [A(π)|π=π∗] from thisex2. Our
estimation algorithm is also grounded in the MDL principle. We describe a
set of stochastic models and define a scheme for coding both of the models
and the given example set. Then, as the functionf2(A(π)), we employ the
model that permits the shortest code length.

We here present the coding scheme for the regression trees that are used
for representing the target function. The code length for the structure of the
regression tree equals the total number of nodes. The article (Quinlan and
Rivest, 1989) presents a full explanation of the code length and of the coding
scheme for the tree. For each non-terminal node, a threshold and an index at
the node must be encoded. The threshold is encoded in the same scheme as
that used for the threshold of the decision lists in Appendix A, and the code
length for the index islog #A(π). Note that thelog is the logarithm with base
2, and thatln denotes the natural logarithm used in this paper. The scheme
presented here makes it feasible to specify an arbitrary regression tree,RT ,
with code length̀(RT). Next, an example set,ex2, must be encoded by using
this regression tree. According to (Yamanishi and Han, 1992), the total code
length is approximated by

`(ex2, RT) = `(RT) + {− logL(ex2|RT) +
1
2
#TN(log e + log #ex2)},

whereL(ex2|RT) is the likelihood,#ex2 is the number of examples inex2,
and#TN is the number of terminal nodes inRT . Let TN be the set of all
terminal nodes in theRT , andtnx be its element. Let#tnx be the number of
examples inex2 that reach the terminal nodetnx. L(ex2|RT) is defined as

L(ex2|RT) =
∏

tnx∈TN

Pr [tnx]#tnx ,

wherePr [tnx] is the probability density at the nodetnx, and is defined as:

Pr [tnx] =
#tnx

#ex2 × V (R(tnx))
.

main.tex; 3/11/2003; 1:30; p.20

LEARNING FROM CLUSTER EXAMPLES 21

R(tnx) is the region for a value vector such that if the vector range isR(tnx),
it reaches the terminal nodetnx, andV (R(tnx)) is the volume ofR(tnx). For
example, in the case of nodetn2 in Figure 8, any value vectors within the
rangea1(π) < 0.5 anda2(π) ≥ 0.1 that are inputted to this regression tree
would reach the nodetn2. SoR(tn2) is (0 ≤ a1(π) < 0.5)∧ (0.1 ≤ a2(π) ≤
1)), andV (R(tn2)) is 0.45(= (0.5−0)× (1−0.1)). We here note why a tree
style representation is used for the functionf2(A(π)), in light of remarking
the advantages of a list type representation in Section 4.1. Since adopting
a tree type of representation makes it possible to calculateR(tnx)s without
referencing any other nodes, it is easier to calculate theR(tnx)s required only
for the regression problem. In contrast, the list type representation has no such
useful property.

In order to acquire the functionf2(A(π)), we must find the regression
tree that permits the shortest total code length`(EX2, RT). For this purpose,
we introduce the algorithm in Figure 9. This algorithm adopts a divide-and-
conquer strategy that recursively divides a given training example set. The
initial regression tree consists of only one terminal node, and represents an
uniform density function that is always at constant1. The current tree is itera-
tively modified. This modification operation is as follows: One of the terminal
nodes of the current tree is replaced with a new non-terminal node, and two
new terminal nodes are added at the branches of the new non-terminal node.
The replaced terminal and the new non-terminal node are selected so as to
maximize`(EX2, RT). Finally, this algorithm stops when no improvement
is feasible, and outputs the current tree.

5. Experiments

We have applied our technique of learning from cluster examples in two
test domains: dot patterns and vector-data images. We below describe these
domains, then present and discuss our test results.

5.1. EXPERIMENTAL DOMAINS AND TESTING METHODS

First, we present what we will revealed from the results on each of the two
experimental domains.

Object sets of the dot pattern domain (Figure 10) are artificially generated.
To partition the sets, we applied the EM algorithm, the clustering method
dedicated to this domain. On application of the EM algorithm, we gave rich
information that is helpful for partitioning, such as the correct number of
clusters and a family of distribution. Partitions derived by the EM algorithm
are compared with the one derived by the rule acquired by our LCE technique.
This comparison never leads to the conclusion that one is superior to the other,

main.tex; 3/11/2003; 1:30; p.21

22 T.KAMISHIMA AND F.MOTOYOSHI

the procedureMAIN

ex2 := {A(π1), A(π2), . . . , A(π#ex2)}: the example set
RT := (TN, NN): a regression tree whose root node is terminal

TN := {tn1}: a set of terminal nodes (tn1 is a root node)
NN := {}: a set of non-terminal nodes

for s from 1 to #A(π) {
δs := 6×〈standard deviation ofas(π1), as(π2), . . . , as(π#ex2)〉/#ex2

}

start:
RTbest := RT
foreachtn′ in TN {

for s from 1 to #A(π) {
Let l andu be the lower and the upper bound

of thes-th attribute of the regionR(tn′) respectively
for d from 1 to∞ {

q := (1/2)d

if (q < δs) then gotocheckend
for t from 1 to 2(d−1) {

θ := q(2t− 1)
if (l ≤ θ < u) then{

RT′ := (TN′, NN′)
NN′ := NN ∪ nn′

(nn′ is the terminal node whose threshold isθ
and is placed at the position used to betn′)

TN′ := {TN− tn′} ∪ {tnR
new, tnL

new}
(tnL

new andtnR
new are

the left and the right node of thenn′ respectively)
if (`(ex2, RT′) < `(ex2, RT)) then RT:= RT′

}
}

}
checkend:

}
}
if (RTbest 6= RT) gotostart
end:
output RTbest
end

Figure 9. Our learning algorithm for searching regression trees

main.tex; 3/11/2003; 1:30; p.22

LEARNING FROM CLUSTER EXAMPLES 23

Figure 10. An example of a dot pattern

(a) a whole image (b) an enlarged image

Figure 11. Examples of vector-data images

since the clustering and the LCE are different kinds of tasks. What we want to
show by this comparison is whether the information required for partitioning
is available by the fully built-in rules acquired by our LCE technique. This
will indicate whether the rules derived by the LCE technique are superior or
equal to the EM algorithm with rich information for partitioning.

Partitioning the vector-data image (Figure 11) is a typical application of
the LCE technique in a realistic domain, as described in Section 2.2. The
difficulty of formalizing partitioning rules can be illustrated by examining
some of the possible distortions in the images. For example, Figure 11(b) is an
enlarged image that depicts the highlighted part of the OR-gate symbol shown
in Figure 11(a). This figure reveals that there are several distortions (spurs
and gaps) in the image. The presence of such imperfections significantly
complicates the task of specifying concrete rules. Therefore, we consider the

main.tex; 3/11/2003; 1:30; p.23

24 T.KAMISHIMA AND F.MOTOYOSHI

vector-image domain a good testbed of a realistic domain for examining the
LCE technique.

5.1.1. Dot Patterns
Segmentation of dot patterns is a basic problem domain for clustering. Dots
are scattered in a 2–dimensional square space of fixed width and height as
shown in Figure 10. Here, all the dots from the same cluster are depicted by
the same type of symbols. These dots are generated according to a Gaussian
distribution (note that if any dot falls outside the square space in this genera-
tion process, it is discarded and a replacement is generated). For each region,
the mean of the Gaussian distribution of its dots is at the center of the circle,
and we use the following 2-dimensional Gaussian mixture distribution:

f(x, y) =
m∑

j=1

zjN(x, y; µj , νj , σj),

N(x, y;µj , νj , σj) =
1

2πσ2
j

exp
(
−(x− µj)2 + (y − νj)2

2σ2
j

)
,

wherem is the number of clusters,zj specifies the ratio of mixing,µj and
νj are the respective means of thex andy positions, andσj is a standard
deviation. This standard deviation differs depending on the type of example
set. We prepared three types of example sets with varying degrees of overlap
between the different clusters. To create each set, we first randomly generated
a value form between 2 and 4, and createdn random points within the square
space. We then created circular regions of radiusrj , 1 ≤ j ≤ m around each
of these points, by generatingrj randomly under the constraint that each of
the resulting circles must touch at least one other (in Figure 10, these re-
gions are depicted by dotted lines). Depending on the type of example set we
wanted to create, we then assignedσj to be eitherσj = rj/3.0 (for separated
example sets),rj/2.5 (for touchingexample sets), orrj/2.0 (for overlapping
example sets). Note that we force the covariance to be zero; namely, thex and
y deviations are equal, since the dots follow such distributions in each type of
example set.

Our three example sets each contain 100 examples. Each object set of an
example set contains 50 dots comprising two to four clusters. The outline
of our procedure to select attributes adopted for deriving final results is as
follows: First, we implement a set of attributes of objects and of object pairs
that have been used for clustering of dot patterns, and select a set of the can-
didate attributes shown in Table I (the details are described in Appendix B).
This preliminary selection is guided by statistical criteria and our subjective
consideration. For example, we discard the attribute, “distance to the5-th
nearest dot,” since no remarkable merit is not observed and it is correlated
with the third or fourth attributes of objects. Second, we select attributes of

main.tex; 3/11/2003; 1:30; p.24

LEARNING FROM CLUSTER EXAMPLES 25

Table I. Candidate attributes for dot patterns

Attributes of objects Attributes of object pairs

1. X–position

2. Y–position

3. Distance to thek-th nearest dot

4. Distance to the nearest dot

1. distance between two dots

2. The smaller position index number in
ascending distance order

3. The larger position index number in
ascending distance order

4. k-th nearest factor

5. Gabriel Graph factor

6. Relative Neighborhood Graph factor

7. Length of the longest edge on its MST
path

8. The number of edges on the MST path
joining the dots

NOTE: all attributes are adopted for the final attribute set. The details are described in
Appendix B.

Table II. Candidate attributes of Partitions

1. the number of partitions #π/#O

2. the square mean of objects in clusters (1/#O2#π)
∑

CI∈π
#C2

I

3. the cubic mean number of objects in clusters(1/#O3#π)
∑

CI∈π
#C3

I

4. the minimum number of objects in clusters (1/#O)minCI∈π #CI

5. the maximum number of objects in clusters (1/#O)maxCI∈π #CI

NOTE:#O, #π, and#CI represent the numbers of objects, clusters, and objects in the
clusterCI , respectively. 1st and 3rd attributes are adopted for attributes of dot patterns,
and 1st, 2nd, and 5th attributes are adopted for attributes of vector-data images.

partitions from the candidate attributes shown in Table II (these are basic
statistics of#CI ’s). We then generate all possible combinations of candidate
attributes. By using each of these combinations together with all attributes
in Table I, we applied the test method in Section 5.2 on the above example
sets. We thus selected the combination that consists of the 1st and the 3rd
candidate attributes, since this leads the least error. Finally, we screen the
candidate attributes of objects and of object pairs in Table I. We generate
all possible attribute sets such that one attribute is missing. By using each
of these attribute sets together with the above best attribute combination of
partitions, we again applied the test method on the above example sets. For

main.tex; 3/11/2003; 1:30; p.25

26 T.KAMISHIMA AND F.MOTOYOSHI

each attribute set, we calculate statistics for testing the improvements against
the attribute set consisting of all attributes. Since no attribute set does not lead
statistically significant improvement for all three example sets, we adopt all
the attributes of objects and of object pairs shown in Table I. Consequently,
we adopt four attributes of objects, eight attributes of object pairs, and two
attributes of partitions. Note that the example sets used for the attribute se-
lection should be separated from the ones used for final learning, since this
might underestimate quantity of errors. We could not do so owning to the
limited size of the example sets and computational resources. However, we
suppose that such underestimation is very small, because we adopt very strict
leave-one-out test, that derives fairly accurate estimation of errors for unseen
object sets.

To provide a comparison for our LCE technique, we also applied the
following EM algorithm (a common clustering technique) (Dempster et al.,
1977) to the task of partitioning the dot patterns. Letn be the number of
observed objects and(xi, yi) be the position of thei-th object. The EM
algorithm leads to parameters that maximize the log-likelihood:

logL(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

log f(xi, yi).

After the parameters are estimated, each object is classified into thek-th
cluster:

k = argmax
j=1,...,m

zjN(xi, yi;µj , νj , σj).

The initial conditions we used for the EM algorithm parameters were as
follows. First, we assumed that the correct number of clusters#π∗ was ex-
plicitly given asm, then we initialized all theσjs to S/6 (S is the width
or height of the 2–dimensional square space) and all thezj to 1/#π∗. As an
initial guess at the actual clustering, we assumed that the means of the clusters
were equi-distantly placed on a circle of radius0.3 × S in the center of the
space.

5.1.2. Vector-data Images
Vector-data images are often used in the process of diagram image under-
standing. A vector-data image represents objects as line-segments, and is
typically used to represent images drawn with thin lines, such as diagrams
or maps. A line-segment is a straight line connecting two end-points. Parti-
tioning this type of object set is a more realistic task than that of dot pattern
partitioning.

We generated our example set of vector-data images by transforming hand-
written logic circuit diagrams. Handwritten diagrams were scanned by an
image scanner, and the common image processing techniques of thinning and

main.tex; 3/11/2003; 1:30; p.26

LEARNING FROM CLUSTER EXAMPLES 27

Table III. Candidate attributes for vector-data images

Attributes of objects Attributes of object pairs

1. X coordinate of mid-point

2. Y coordinate of mid-point

3. Difference of X coordinate between
end-points

4. Difference of Y coordinate between
end-points

5. The number of line-segments in the
arc including the line-segment to which
attribute is assigned

6. Standard deviation of the lengths of the
line-segment in the arc

7. Standard deviation of the angles of the
line-segments in the arc

8. Sum of the lengths of the line-segments
in the arc

1. Connection information

2. Difference of angles

3. Shortest distance between end-points

4. The smaller position index number in
ascending distance order

5. The larger position index number in
ascending distance order

6. Distance between mid-points

7. Whether two line-segments are in the
same arc

NOTE: 1st, 2nd, and 5th attributes of objects are NOT adopted for the final attribute set.
The details are described in Appendix C.

vectorization were then applied. The original handwritten diagrams consisted
of five kinds of parts: AND-gates, OR-gates, buffers, terminals, and connect-
ing lines. An example of a vector-data image of a logic circuit diagram is
shown in Figure 11. The segmentation task is then to divide these vector-data
images into clusters such that each cluster consists of line-segments whose
origins are the same diagram component.

Our example set of logic circuit diagrams consists of 100 examples. The
mean number of clusters and of objects are16.7 and102.9, respectively. The
attribute selection procedure is the same as that for the dot pattern domain.
The set of candidate attributes of objects and of object pairs are shown in
Table III (the details are described in Appendix C). For this domain, we again
use the candidate attributes of partitions shown in Table II at Section 5.1.1. As
a result of screening, we adopt the the 1st, 2nd, and 5th attributes of partitions.
We finally screen the candidate attributes of objects and of object pairs, and
eliminate the 1st, 2nd, and 5th attributes of objects. We consequently select
five attributes of objects, seven attributes of object pairs, and three attributes
of partitions.

main.tex; 3/11/2003; 1:30; p.27

28 T.KAMISHIMA AND F.MOTOYOSHI

5.2. A TESTING METHOD

Before discussing our experimental results, we present a testing method for
determining whether true partitions are appropriately estimated using the ac-
quired rule. The method is a cross-validation test that is commonly used for
learning from examples. We have also created a quantitative measure for
comparing the estimated partition with a true partition to test how closely
the true partition has been estimated.

For a cross-validation test, a given example set is first split into two parts: a
training example set and a testing example set. After acquiring a partitioning
rule from the training example set, the rule is evaluated to determine how
appropriately it can partition the object sets in the testing example set. To get
a reliable measure, we adopt aleave-one-out-test, a strict cross-validation test.
The first example is picked from a given example set, and a rule is acquired
from the rest of the example set. Then, for an object set in the picked example,
a partition is estimated by using the acquired rule. The true partition is already
specified in the picked example, and the similarities between the estimated
and the true partitions are calculated. This process is repeated for each of the
other examples in the example set. The mean of the similarities can then be
used as a measure for the chance that any unseen object set will be partitioned
appropriately.

We introduceratio of information loss(RIL) as a similarity measure. This
is also called the uncertainty coefficient in numerical taxonomy literature. The
RIL is the ratio of the information that is not acquired to the total information
required for estimating a correct partition. Another definition of the RIL is
posterior entropy divided by prior entropy. LetΠ∗ be an event where an object
pair is in the same cluster of the true partitionπ∗. The prior entropy, which is
the mean of the information required for estimating the true partition, is

H(Π∗) =
1∑

s=0

N(s)
#P

log
#P

N(s)
,

whereN(s) is the number of object pairs that satisfy the conditionin(p, π∗) =
s. Note that the base number of the logarithm is2 in this paper. Let̂Π be an
event where a pair of objects are in the same cluster of the estimated partition
π̂. The posterior entropy, which is the mean of the information not acquired
for correct estimation, is

H(Π∗|Π̂) =
1∑

s=0

1∑

t=0

N(s, t)
#P

log
N(0, t) + N(1, t)

N(s, t)
,

main.tex; 3/11/2003; 1:30; p.28

LEARNING FROM CLUSTER EXAMPLES 29

whereN(s, t) is the number of object pairsp that satisfy the conditionin(p, π∗) =
s andin(p, π̂) = t. Consequently,

RIL =
H(Π∗|Π̂)
H(Π∗)

.

The smaller the RIL becomes, the more appropriately a partition is esti-
mated. It ranges from0 to 1 and becomes0 if and only if the two partitions
are completely identical. That the RIL is bounded was one of our main rea-
sons for selecting this measure. Other measures are also possible, such as the
ratio of correctly partitioned object pairs, which is also used in the numeri-
cal taxonomy literature (?; Rand, 1971). However, for the ratio of correctly
partitioned pairs, the lower bound changes according toπ∗, and the resulting
scale normalization problem makes it difficult to use this as the basis for cal-
culating the means of these similarities. As another example, the correlation
coefficient is commonly used for the gene finding problem (the detection of
coding regions in given DNA sequences) (Burset and Guigó, 1996). However,
this coefficient becomes infinite when the denominator is zero. Though this
circumstance can be dealt with by using approximations, using the RIL avoids
this problem altogether.

5.3. EXPERIMENTAL RESULTS

Here we present and discuss our experimental results on the example sets
of dot patterns and of vector-data images. First, we apply our LCE method
and the benchmark EM algorithm to the example sets of dot patterns. Having
established this application, we then apply our method to the more realistic
example set of vector-data images.

5.3.1. Testing Using Dot Patterns
The rows in Table IV show the respective experimental results for the three
example sets: separated, touching, and overlapping dot patterns. In the second
and third columns of the table, we show the means (and standard deviations,
in parentheses) of the RILs and of Rand’s criteria based on the rules acquired
by our LCE method and based on the EM algorithm, respectively. In the last
column, we show pairedt-values, which are measures to test whether the
difference of means is statistically significant. We show the Rand’s criteria
(Rand, 1971), the ratio of correctly partitioned object pairs, only for refer-
ence. (The Rand’s criteria is not fit for evaluating the results of LCE tasks
because of the scale normalization problem, as pointed out in Section 5.2.)

As can be seen in Table IV, the partitions estimated by our LCE methods
are comparable to those by the EM algorithm. The positivet-values indicate
that the mean of the RILs in the case of our LCE method is smaller, but
all values are less thant0.99=2.365, so the differences are not statistically

main.tex; 3/11/2003; 1:30; p.29

30 T.KAMISHIMA AND F.MOTOYOSHI

Table IV. The experimental results (means and s.d.s of RILs and of Rand’s criteria) derived by
the rules acquired by our LCE method and by the EM algorithm from the dot pattern example
sets

RIL Our LCE Method EM algorithm t-value

Separated 0.069(0.1463) 0.093(0.1809) +1.271<t0.99

Touching 0.159(0.1729) 0.165(0.2121) +0.280<t0.99

Overlapping 0.369(0.2326) 0.400(0.2695) +1.117<t0.99

Rand’s Our LCE Method EM algorithm

Separated 0.986(0.0387) 0.982(0.0395)

Touching 0.969(0.0416) 0.967(0.0543)

Overlapping 0.917(0.0692) 0.905(0.0885)

Table V. The experimental results (means and s.d.s of RILs) derived by the rules that our
original and simplified methods acquired from the dot pattern example sets

Original Method Simplified Method t-value

Separated 0.069 (0.1463) 0.067 (0.1496) −0.476<t0.99

Touching 0.159 (0.1729) 0.162 (0.1753) +1.092<t0.99

Overlapping 0.369 (0.2326) 0.371 (0.2321) +1.126<t0.99

significant. As noted in Section 5.1, in order to produce results for the EM
algorithm we supplied significant amounts of information to assist in parti-
tioning. Therefore, it is proper to conclude that our LCE method is successful
in acquiring knowledge for partitioning solely from a given example set.

To investigate the effects of Partition Density (5), we carried out an ad-
ditional test, using a simplified version of our method in which no attributes
of partitions are employed. Specifically, we set the functionf2(A(π)) to be
constant at1. Table V shows how this simplified algorithm compares with
our original method. The positivet-value in this table indicates an advan-
tage of our original method, but the difference is not statistically significant.
To investigate further aspects, we applied a measure that directly takes into
account the effects of the 1st attribute of partitions, which represents the
numbers of clusters. The measure is the root mean square of the error in
the numbers of clusters (the difference between the number of clusters in the
estimated and the true partitions). Table VI shows how the simplified method
compares with our original method on the dot pattern example sets when

main.tex; 3/11/2003; 1:30; p.30

LEARNING FROM CLUSTER EXAMPLES 31

Table VI. The root mean squares of the error (the difference between the number of clusters
in the estimated and the true partitions) for our original and our simplified methods

Original Method Simplified Method t-value

Separated 0.608 0.735 1.4595>F0.95

Touching 0.387 0.520 1.8000>F0.99

Overlapping 0.300 0.346 1.3333<F0.95

assessed with this measure. TheF -ratios in the figure are the ratio of the
mean square of the simplified method’s estimations to that of the original
method. It is known that this value followsF -distribution with(n1−1, n2−1)
degrees of freedom(n1=n2=100). Since the99th- and95th-percentiles for
this distribution are1.6015 and1.3941, respectively, the difference between
these root mean squares are statistically significant in the separated case at a
significance level of95% and in the touching case at a level of99%. In the
remaining overlapping case, the difference is very close to being significant.
This demonstrates an advantage of adopting the 1st attribute of partitions,
though the difference between RILs is not statistically significant.

For reference and to facilitate an intuitive comparison, in Figure 12, we
give an example of the partitioning of two sample dot patterns (both from
the touching object sets). The true partitions are shown in Figure 12(a). We
selected these particular examples because they represent the most difficult
data sets for the EM algorithm (left side of the figure) and our method (right
side of the figure). That is, these are the examples for which the partitions
produced by the algorithms had maximum RIL. Figure 12 (b) and (c) show
the actual partitions that were respectively derived by the EM algorithm and
by the rules acquired by our LCE method. For this domain, where the EM
algorithm can be given large amounts of information about the target position,
it is evident that the each algorithm has its own strengths and weaknesses.

5.3.2. Testing Using Vector-data Images
Next, we present the results for the example set of vector-data images. Ta-
ble VII shows the means and standard deviations of RILs produced by the EM
algorithm, by the rule acquired by our original LCE method, and by the rules
acquired by our simplified LCE method. The pairedt-values for comparing
our original and simplified LCE methods. The means and standard deviations
of Rand’s criteria are also shown.

The EM algorithm applied here is almost the same as that applied to the
dot-patterns except for the following four points: (1) We use five attributes
of objects, described in Section 5.1.2. (2) The standard deviation of mixed

main.tex; 3/11/2003; 1:30; p.31

32 T.KAMISHIMA AND F.MOTOYOSHI

(a) True Partitions

RIL = 0.908 RIL = 0.000
(b) Partitions derived by The EM Algorithm

RIL = 0.308 RIL = 0.758
(c) Partitions derived by The Rules Acquired by Our LCE Method

Figure 12. The partition examples from the dot pattern example set

main.tex; 3/11/2003; 1:30; p.32

LEARNING FROM CLUSTER EXAMPLES 33

Table VII. The experimental results (means and s.d.s of the RILs and of Rand’s criteria) for
the vector-data image example sets

EM Algorithm Original
Method

Simplified
Method

t-value

RIL 0.991 (0.0062) 0.398 (0.1329) 0.409 (0.1413) +3.484>t0.99

Rand’s 0.917 (0.0176) 0.974 (0.0123) 0.974 (0.0126)

Gaussian distributions is different for each set of attributes. (3) Initial param-
eters of Gaussian distribution are the means and standard deviations derived
from the true partitions. (4) Initial mixture ratios are derived from the true
partitions. The mean of the RILs derived by the EM algorithm is nearly1,
which indicates that only a small amount of information is gained. This result
demonstrates that the EM algorithm is not fit for this segmentation task. This
task, therefore, can be considered as a good testbed for our LCE method.

We then moved to the analysis of the results our LCE methods. In this case,
thet-value gives us a clear, statistically significant result that the means of the
original method’s RIL are smaller. This result indicates the clear advantage
of adopting Partition Density (5).

For both methods, the mean value of the RIL is larger than that found
with the dot-pattern example set, but this is because the image segmentation
problem is more realistic, and more difficult. Yet, even for this hard example
set, the RIL between the estimated and true partitions shows that our method
acquires 60% of the information required for complete partitioning.

As in the previous section, we offer several examples illustrating the per-
formance of the partitioning algorithm. This time we choose the three exam-
ples representing the best, median, and worst results of our method. Figure 13
shows the true, then the estimated partitions for each example, together with
the RIL of the estimated result. Note that we depict each cluster as a set
of line-segments surrounded by a thin dotted line. In the best case, the true
partition is almost perfectly estimated; only one line-segment is incorrectly
grouped. On the other hand, in the worst case, the image is almost randomly
partitioned. We suppose that this is an outlier, because the RIL of the second-
worst case is0.641 and the second-worst partition seems not so random.
Because Criterion (8) is a function having very many local minima and our
searching algorithm is greedy, a very bad partition is estimated infrequently.

main.tex; 3/11/2003; 1:30; p.33

34 T.KAMISHIMA AND F.MOTOYOSHI

(a) The Best Result (RIL = 0.090)

(b) The Median Result (RIL = 0.415)

(c) The Worst Result (RIL = 0.858)

Figure 13. Examples of true and estimated partitions from the vector-data image example set

main.tex; 3/11/2003; 1:30; p.34

LEARNING FROM CLUSTER EXAMPLES 35

6. Discussions

In this section, we discuss the LCE task and our LCE techniques.
We first comment on the composite attribute vector form introduced in

Section 2.3. The form is composed of three types of attributes: attributes of
objects, object pairs, and partitions. We employed the attributes of object pairs
so as to be capable of handling the interdependence of objects. For example,
in the case of the vector-data segmentation task in Section 5.1.2, assume that
there are two line-segments expected to depict connecting lines, and grouped
together. If no other line-segments change, but an AND-gate symbol is placed
between the above two line-segments, those two line-segments should be-
long to distinct clusters. In this case, the existence of other objects influence
whether these two objects will belong to the same cluster. To handle such
interdependencies among objects, attributes of object pairs are required. It
might be considered that the role attributes of objects can be merged into that
of attributes of object pairs. We, however, disagree with this opinion, because
there exists a category of clustering task for which the assignment of objects
can be decided without referring to other objects. In (McCallum et al., 2000),
for example, a set of bibliographic citation strings was partitioned such that
each cluster consisted of the strings referring to the same technical papers.
Once it appeared that two strings were in the same cluster, those two should
continue to remain so, independent of whether any new string is added to
the set. In this case, to perform this type of clustering task, it is required to
take into account not the interdependencies among objects but the features of
objects only. We adopt both attributes of objects and of object pairs, in order
to create a method equally applicable to clustering tasks with and without in-
terdependencies among objects. Finally, the role of the attributes of partitions
cannot be filled by the other two types of attributes, since the latter cannot
fully represent the features of an entire set. Furthermore, the experimental
results reveal the effectiveness of adopting attributes of partitions.

Concerning the LCE tasks, the question might be posed whether the task is
equivalent to two class discrimination tasks to estimate whether two objects
are in the same cluster. From that perspective, it would be difficult to take
into account the effects of entire partitions and of interdependencies among
the objects.

We next comment on related works. Though we do not know of any pre-
vious work that addresses LCE, several works (Bensaid et al., 1996; Emde,
1994) do partitioning using supervisory information. These algorithms parti-
tion a given object set that is composed of both unlabeled and labeled objects.
However, since a set of class labels is given in advance in these works, they
should be categorized into classification algorithms, and are clearly different
from ours.

main.tex; 3/11/2003; 1:30; p.35

36 T.KAMISHIMA AND F.MOTOYOSHI

We can summarize the merits of using LCE techniques as follows: The
LCE technique makes the rule acquisition process for partitioning more sys-
tematic. In order to derive the desired partitions by using a clustering tech-
nique, potential functions or dissimilarity measures must be designed to assist
in deriving such partitions. The design of such functions or measures involves
trial and error, and this work consequently can become troublesome. The LCE
algorithms lessen this burden.

The systematic acquisition of partitioning rules is also helpful for attribute
selection. In our dot patterns and vector-data images examples, many kinds
of partitioning attributes had already been developed. Indeed, we did not de-
velop new attributes specialized for our LCE method in our two domains. We
gathered candidate attributes that have previously been used for partitioning,
modified them so as to fit a composite attribute vector form, and selected
appropriate attributes from these candidates using cross validation. It is an
open question as to how difficult attribute discovery would be in novel, less
studied domains.

It might be considered that if state of art attributes are available, the parti-
tioning task will become almost trivial. We do not think so, based on the fact
that many attributes for the image segmentation task have been developed, but
we suppose that such state of art attribute is not yet found. Pavlidis remarked,
“It seems that no matter how sophisticated a surface fitting or step finding
algorithm we use, we cannot improve the results of object outlining for a
very large class of images” (Pavlidis, 1992). We also should explore another
line, such as developing LCE techniques.

On the other hand, LCE techniques have the following drawbacks. The
most serious obstacle is that of collecting training examples. Indeed, a great
deal of time and effort was spent supplying true partition for one hundred
of images in Section 5.1.2. However, we believe that it is more troublesome
to design partitioning rule that is competitive to the rules acquired by LCE
techniques. More importantly, while only an expert can design partitioning
rules, even a non-expert can supply examples. Scalability is another issue. In
order to learn the functionf1(p,AC(p)), the size of the training example set
must grow according to the order of the squared numbers of objects, which
are very numerous. This issue can be avoided by proper sampling techniques.
Note that though bitmap images are more popular than vector-data images,
we could not handle bitmap images due to this scaling problem. However
the focus of this paper was to determine whether our LCE algorithm could
learn useful rules, so we targeted a rather small-scale task. Although binary
attributes were tested in our experiments, and multi-value attributes were not,
the method in Section 3.1 can be applied to multi-value attributes, so we
expect that this issue will not be problematic.

main.tex; 3/11/2003; 1:30; p.36

LEARNING FROM CLUSTER EXAMPLES 37

7. Conclusions

We introduced learning from cluster examples as a new learning task, and dis-
cussed the merits of accomplishing this task. We proposed a solution method
for the task and applied this method to object sets in two types of domains.
Using a set of dot patterns, we showed that our method could automatically
acquire and fully represent the information required for appropriate parti-
tioning. We then showed that these results carried over to the more realistic
domain of vector-data images.

Having laid the foundations for the basic task in this paper, we now plan to
continue this research by investigating additional approaches. Another topic
for further research is the extension of the composite attribute vector form,
and the development of a method capable of dealing with attributes assigned
to clusters.

Appendix

A. The Description Length for the Decision Lists and Example Sets

The total description length of the decision lists and example sets is as fol-
lows.

`(ex1, DL) = log∗(m) +
m∑

i=1

(
`(Ti) + `(S(Ti))

)
.

log∗(·) Rissanen’s code length for natural numbers (Rissanen, 1983)

m the number of terms in the decision list

`(Ti) code length for the termTi

`(S(Ti)) code length for the example set covered byTi

Code length for the example setS (Wallace and Patrick, 1993):

`(S) = log(#S + 1) + log
(

#S
#S+

)

#S the number of examples inS

#S+ the number ofS elements whose class is1

Code length for the termT :

`(T) =
#Aused∑

j=1

log(
(

#A
#j

)
+ 1) +

∑

j∈Aused

`(Lj)

main.tex; 3/11/2003; 1:30; p.37

38 T.KAMISHIMA AND F.MOTOYOSHI

Figure 14. Code length for thresholds

#A the number of attribute vector elements

Aused the set of indices specifying literals used in the termT

#Aused the number of literals used in the termT

`(Lj) code length for the literalLj

Code length for the literalL (for continuous attributes)
The code lengths for the three types of literals are as follows:
`(as < θu) = log 3 + `(θu),
`(θl ≤ as < θu) = log 3 + `(θl) + `(θu),
`(θl ≤ as) = log 3 + `(θl),

where`(θl) and`(θu) are code lengths for the thresholds. These lengths are
determined as depicted in Figure 14. For example, the half-way point between
the minimum and maximum thresholds is encoded with one bit. The quarter-
way point is encoded with three bits. Every time the precision doubles, two
more bits are required to encode the threshold. Itoh’s paper (Itoh, 1992) gives
a full explanation of this.

Code length for the literalL (for discrete attributes)
log(d− 1) + log

(
d−1
d′

)

d size of the attribute’s domain

d′ the number of values appears to the right of the literal

B. Attributes for Dot Patterns

We here describe the details of the candidate attributes shown in Table I of
Section 5.1.1.

All but the third of the dot attributes should be fairly self-explanatory;
they are the X and Y coordinates and the Euclidean distances to thek-th
nearest neighbor (the value of parameterk will be introduced below) and to
the nearest dot. In the attributes of the object pairs, the first attribute is simply
the Euclidean distance between two dots, but the second and third attributes

main.tex; 3/11/2003; 1:30; p.38

LEARNING FROM CLUSTER EXAMPLES 39

(a) Region for a Gabriel Graph (b) Region for a Relative Neighborhood Graph

Figure 15. Dot-free regions in gabriel graphs and relative neighborhood graphs

require the imposition of a total order on the dots. Let us call the dots in the
object pairA andB. First, the dots are ordered according to their Euclidean
distance from dotA, and the position of dotB in this order is found. Then,
the dots are ordered according to their distance from dotB, and the position
of dotA in this order is found. The second attribute of object pairs is then the
smaller of these numerical positions, and the third is the larger.

The fourth attribute of the object pairs is related to the work of Wong
and Lane (Wong and Lane, 1983). They employed the following factor for
clustering:(#O/2k)(Vk(A) + Vk(B)), wherek is an adjustable parameter.
The functionVk(A) gives the volume of a region centered on a dotA with
radiusrk, the distance to thek-th nearest dot. In 2–dimensional space, this is
simplyVk(A) = (π/2)rk

2. We employ Wong and Lane’s factor as the fourth
attribute of the dot pairs, with parameterk (also mentioned above in relation
to the third attribute of the dots) set to the value of2 loge #O, as suggested
in (Wong and Lane, 1983).

The fifth and sixth attributes of object pairs are related to Urquhart’s work
(Urquhart, 1982) on graph theoretical clustering. Urquhart proposes a clus-
tering technique based on aGabriel graph(GG) and arelative neighborhood
graph(RNG). The GG is a graph having edges between two dots, A and B, if
no other dot lies in the circular region that can be constructed between them,
as shown in Figure 15(a). The RNG is similar to this, except that the area
considered between the two dots is the region described in Figure 15(b). We
adopt the number of dots in these two types of regions as the fifth and the
sixth attributes of object pairs.

The seventh and eighth attributes are related to Zahn’s pioneering work on
graph theoretical clustering (Zahn, 1971) that employs aminimal spanning
tree (MST). The MST is defined as a tree connecting all the dots in a given
dot pattern for which the sum of the lengths of its constituent edges is minimal
among all possible trees. There is only one path between any pair of two dots

main.tex; 3/11/2003; 1:30; p.39

40 T.KAMISHIMA AND F.MOTOYOSHI

on an MST. For the dotsA andB, we adopt the length of the longest edge on
the MST path between them as the seventh attribute and the number of edges
on this path as the eighth attribute.

C. Attributes for Vector-Data Images

We here describes the details of the candidate attributes shown in Table III of
Section 5.1.2.

The first four attributes of the line-segments are simply the X coordinate
of the line-segment’s mid-point, the Y coordinate of the mid-point, the dif-
ference between the X coordinates of the two end-points, and the difference
between the Y coordinates of the two end-points.

All the other attributes of the line-segments are related to the notion of an
arc: a series of connected line-segments that do not pass branching or terminal
points. Branching points are defined as end-points to which three or more
line-segments are connected. Terminal points are defined as end-points to
which only one line-segment is connected. Four attributes are calculated from
the arc involving the target line-segment. The first of these is the number of
line-segments in the arc. The subsequent attributes are the standard deviation
of the lengths and the angles of the line-segments in the arc. Finally, the sum
of the lengths of the line-segments in the arc is also included as an attribute.

The attributes of object pairs for vector-data images also require some
explanation. Let us call the two line-segments in the pairA andB. The first
attribute, connection information, is then defined as

{
x− 1 if A andB are directly connected,

0 otherwise,

wherex is the total number of line-segments connecting to the end-point that
A andB have in common. The second attribute is the difference between
the angles of the line-segments, regularized so as to range from0◦ to 90◦.
The third attribute is the shortest distance that can join an end-point ofA to
an end-point ofB. The fourth and fifth attributes are found by imposing a
total order on all the line-segments. They are similar to the second and third
attributes of object pairs for dot patterns, except that the minimum distance
between end-points (as in the third property of pairs of line-segments) is used
to construct the order. The sixth attribute is then the distance between the
mid-points ofA andB, and the seventh attribute is a Boolean “yes” or “ no”
to indicate whether the line-segmentsA andB belong to the same arc.

main.tex; 3/11/2003; 1:30; p.40

LEARNING FROM CLUSTER EXAMPLES 41

Acknowledgements

We thank Ian Frank, Shotaro Akaho, and Kazuo Miyashita for valuable ad-
vice.

References

Bensaid, A. M., L. O. Hall, J. C. Bezdek, and L. P. Clarke: 1996, ‘Partially Supervised
Clustering for Image Segmentation’.Pattern Recognition29(5), 859–871.

Burset, M. and R. Guiǵo: 1996, ‘Evaluation of Gene Structure Prediction Programs’.
Genomics34, 353–367.

Dempster, A. P., N. M. Laird, and D. B. Rubin: 1977, ‘Maximum Likelihood from Incomplete
Data via The EM Algorithm’.Journal of The Royal Statistical Society (B)39(1), 1–38.

Emde, W.: 1994, ‘Inductive Learning of Characteristic Concept Descriptions from Small Sets
of Classified Examples’. In:Proc. of European Conf. of Macine Learning. pp. 103–121.
[LNAI 784].

Fisher, D. H.: 1987, ‘Knowledge Acquisition via Incremental Conceptual Clustering’.Ma-
chine Learning2, 139–172.

Itoh, S.: 1992, ‘Application of MDL Principle to Pattern Classification Problems’.J. of
Japanese Society for Artificial Intelligence7(4), 608–614. (in Japanese).

Kamishima, T., M. Minoh, and K. Ikeda: 1995, ‘Rule Formulation Based on Inductive
Learning for Extraction and Classification of Diagram Symbols’.Transactions of The
Information Processing Society of Japan36(3), 614–626. (in Japanese).

McCallum, A., K. Nigam, and L. H. Ungar: 2000, ‘Efficient Clustering of High-Dimensional
Data Sets with Application to Reference Matching’. In:Proc. of The 6th Int’l Conf. on
Knowledge Discovery and Data Mining. pp. 169–178.

Michalski, R. S.: 1993, ‘Inferential Theory of Learning as a Conceptual Basis for Multistrat-
egy Learning’.Machine Learning11, 111–151.

Pagallo, G. and D. Haussler: 1990, ‘Boolean Feature Discovery in Empirical Learning’.
Machine Learning5, 71–99.

Pavlidis, T.: 1992, ‘Why Progress in Machine Vision is So Slow’.Pattern Recognition Letters
13, 221–225.

Quinlan, J. R.: 1986, ‘Induction of Decision Trees’.Machine Learning1, 81–106.
Quinlan, J. R. and R. L. Rivest: 1989, ‘Inferring Decision Trees Using The Minimum

Description Length Principle’.Information and Computation80, 227–248.
Rand, W. M.: 1971, ‘Objective Criteria for The Evaluation of Clustering Methods’.Journal

of The American Statistical Association66, 846–850.
Rissanen, J.: 1983, ‘A Universal Prior for Integers and Estimation by Minimum Description

Length’. The Annals of Statistics11(2), 416–431.
Urquhart, R.: 1982, ‘Graph Theoretical Clustering Based on Limited Neghbourhood Sets’.

Pattern Recognition15(3), 173–187.
Wallace, C. S. and J. D. Patrick: 1993, ‘Coding Decision Trees’.Machine Learning11, 7–22.
Wong, M. A. and T. Lane: 1983, ‘Akth Nearest Neighbour Clustering Procedure’.Journal of

The Royal Statistical Society (B)45(3), 362–368.
Yamanishi, K.: 1992, ‘A Learning Criterion for Stochastic Rules’.Machine Learning9, 165–

203.
Yamanishi, K. and T. Han: 1992, ‘Introduction to MDL from Viewpoints of Information

Theory’. J. of Japanese Society for Artificial Intelligence7(3), 427–434. (in Japanese).

main.tex; 3/11/2003; 1:30; p.41

42 T.KAMISHIMA AND F.MOTOYOSHI

Zahn, C. T.: 1971, ‘Graph-Theoretical Methods for Detecting and Describing Gestalt Clus-
ters’. IEEE Trans. on Computers20(1), 68–86.

main.tex; 3/11/2003; 1:30; p.42

