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Abstract

We advocate a new learning task that deals with orders
of items, and we call this theLearning from Order Examples
(LOE) task. The aim of the task is to acquire the rule that
is used for estimating the proper order of a given unordered
item set. The rule is acquired from training examples that
are ordered item sets. We present several solution methods
for this task, and evaluate the performance and the charac-
teristics of these methods based on the experimental results
of tests using both artificial data and realistic data.

1 Introduction

In this paper, we advocate a new learning task that deals
with orders of items, and we call this theLearning from Or-
der Examples(LOE) task. The aim of the LOE task is to
acquire the rule that is used for estimating the proper or-
der of a given item set. The rule is acquired from training
examples that are ordered item sets.

An example of performing the LOE task would con-
sist of completing a questionnaire survey on preference in
foods. The surveyor presents several kinds of foods to each
respondent and requests that he/she sort the foods according
to his/her preferences. By applying the LOE learning algo-
rithm, for example, the surveyor will be able to determine
the most preferred food, or to detect the degree of influence
of attributes on respondent’s preferences. For such a sur-
vey, it is typical to adapt the Semantic Differential method.
In this method, the respondent’s preferences are measured
by a scale, the extremes of which are symbolized by antony-
mous adjectives. For examples:

[like] 5 4 3 2 1 [dislike].
Use of such a scale assumes that all the respondents share an
understanding of its range, divisions and extremes. Such an
unrealistic assumption can be avoided by introducing order
scales and LOE techniques.

We present related works in Section 2, and formalize the
LOE task in Section 3. Several LOE solution methods are

presented in Section 4, and the experimental results in Sec-
tions 5 and 6. Section 7 summarizes our conclusions.

2 Related Works

Our LOE task is relevant to the work of Cohen et al. [1].
The inputs of their task are item pairs with the precedence
information; that is information about which of the items
should precede the other. From this set of pairs, their origi-
nal algorithm derived a preference functionPREF(Ix, Iy)
measuring the confidence that itemIx precedes itemIy.
They then attempted to find the order that maximizes the
following function:

∑
x,y:IxÂIy PREF(Ix, Iy), (1)

whereIxÂIy denotes thatIx precedesIy. The most ba-
sic difference between their study and ours is that inputs are
item pairs with precedence information, whereas inputs of
LOE tasks are sets of ordered items. Additionally, their goal
was to obtain orders that preserved the pairwise precedence
information as closely as possible, whereas ours is to esti-
mate totally well sorted orders. These two orders are closely
related, but are clearly distinguishable from one another, as
indicated by an experiment described in Section 5. Further,
Cohen et al. considered errors in thePREF function, not
errors in final orders. We, on the other hand, explicitly ex-
amined the errors in final orders. Recently, Kazawa et al.
[2] dealt with the similar problem to ours, but adopted an-
other measures for errors in orders.

Several other previous studies have dealt with orders.
Mannila and Meek [4], for example, tried to establish the
structure expressed by partial orders among a given set of
ordered sequential data. Sai et al. [6] investigated associa-
tion rules between order variables.

3 Formalization of a LOE task

This section formally states the task of learning from or-
der examples (LOE). This task is composed of two major
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stages: a learning stage and a sorting stage. In the learning
stage, the rule for sorting is acquired from a training exam-
ple set. In the sorting stage, based on the acquired rule, the
true order of an unordered item set is estimated.

An itemIx corresponds to an object, entity, or substance
to be sorted. Items are individualized by the attribute value
vector,A(Ix)=(a1(Ix), a2(Ix), . . . , a#A(Ix)) (#A is the
number of attributes). In this paper, we concentrate on the
case in which all the attributes are categorical. The domain
of thes-th attribute isvs

1, · · · , vs
#as . The universal item set,

{I}All, consists of all possible items. An item set,{I}i, is
a subset of{I}All. The number of items in{I}i is denoted
by #Ii.

An order is a sequence of items that are sorted according
to some property, such as size, preference, or price. The
order of the item set{I}i = {Ix, Iy, . . . , Iz} is denoted by
Oi=IxÂIyÂ · · ·ÂIz. To express the order of two items,
IxÂIy, we use the sentence “Ix precedesIy.” We assume
an unobserved order of the universal item set, and call this
the absolute order,O∗

All.
The example is a 2-tuple,({I}i, O

∗
i ); an item set and

its true order. In a noiseless case, the true order is consis-
tent with the absolute order. In a realistic situation, how-
ever, true orders may be affected by noises, e.g., swapping
of item positions or changes of attribute values. An example
set,EX, consists of#EX examples, as follows:

EX = {({I}1, O∗1), ({I}2, O∗2), . . . , ({I}#EX , O∗
#EX)}.

Note that there are items included in{I}All that do not ap-
pear in any examples.

The aim of the LOE task is to acquire the rule from the
above training example set. The acquired rule is then used
for estimating the true order of an unordered item set. We
denote an unordered item set by{I}U , and its estimated
order byÔU . Note that attribute value vectors of items in
the unordered set are known.

In order to directly evaluate the errors in orders, we
adopt theSpearman’s Rank Correlation Coefficientor the
“ρ” [3]. The ρ is the correlation between ranks of items.
The rank,r(O, x), is the cardinal number that indicates the
position ofIx in the orderO. For example, for the order
O=I3ÂI1ÂI2, ther(O, 3)=1 and ther(O, 2)=3. If no tie
in rank is allowed, theρ between two orders,O1

i andO2
i ,

can be simply calculated as follows:

ρ = 1−
6×∑

Ix∈{I}(r(O
1, x)− r(O2, x))2

(#I)3 −#I
.

Theρ becomes1 if two orders are coincident, and−1 if one
order is a reverse of the other order.

4 Methods

We describe two classification-based and one regression-
based solution methods for the LOE task.

4.1 The LOE Methods Based on Classification
Techniques

This method is similar to that of Cohen et al. The exam-
ples are decomposed into a set of item pairs, and the pref-
erence function is derived from these pairs. The unordered
items are sorted based on this function.

In the learning stage, from the item set{I} in the exam-
ple({I}, O∗), all the item pairs,(Ix, Iy), are extracted such
thatIx precedesIy in the orderO∗. For example, from the
orderO∗ = I3ÂI1ÂI2, three item pairs,(I3, I1),(I3, I2),
and(I1, I2), are extracted. Such pairs are extracted from
all #EX examples, and these are collected into the setP .

Then the preference function,PREF(Ix, Iy), is derived
from the setP . This function, when given the attribute
values ofA(Ix) andA(Iy), outputs the confidence thatIx

precedesIy in the absolute order. To derive this preference
function, we adopt the technique of the naive Bayesian clas-
sifier [5], as follows:

PREF(Ix, Iy) = Pr[IxÂIy|A(Ix), A(Iy)]

=
Pr[A(Ix),A(Iy)|IxÂIy]

Pr[A(Ix),A(Iy)|IxÂIy]+Pr[A(Ix),A(Iy)|IyÂIx]
,

Pr[A(Ix), A(Iy)|IxÂIy] ≈
#A∏
s=1

Pr[as(Ix),as(Iy)|IxÂIy].

Note thatPr[IxÂIy] = Pr[IyÂIx] = 0.5 is assumed. As
the probabilityPr[as(Ix),as(Iy)|IxÂIy], we adopt the follow-
ing Bayesian estimator with Dirichlet prior in order that the
probability keeps non-zero:

#(as(Ix), as(Iy)) + 1/(#as)2

#P + 1
,

where #(as(Ix), as(Iy)) is the number of all the pairs
(Iz, Iw) such thatas(Ix)=as(Iz) andas(Iy)=as(Iw), and
#P is the number of pairs inP .

In the sorting stage, by usingPREF(Ix, Iy), the true
order of {I}U is estimated. We examined the SumClass
and ProductClass strategies, as follows.
SumClass (SC): The following greedy algorithm is de-
signed so as to maximize the Equation (1); that is, the target
function of Cohen et al.

1) Ô(0) := ∅, {I}(0) := {I}U , t := 0
2) Ix := arg maxx

∑
y:Iy∈{I}(t),x6=y PREF(Ix, Iy)

3) Ô(t+1) := Ô(t)ÂIx, {I}(t+1) := {I}(t) − Ix

4) if {I}(t+1) = ∅ then output Ô(t+1) asÔU

else t := t + 1, goto step 2

Simply speaking, this algorithm chooses, one by one,
the most-preceding item. Note that this algorithm be-
comes equivalent to the greedy method of Cohen et al. if
PREF(Ix, Iy)=1−PREF(Iy, Ix) is satisfied.
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ProductClass (PC): This strategy is the same as the Sum-
Class strategy, except for this criterion of optimality. As the
criterion, Cohen et al. adopted Equation (1), (i.e., the sum
of the PREF’s values), but they did not present any theo-
retical reason for adopting this sum. We therefore test the
product of thePREF values, because this value represents
the likelihood of precedence events under the independence
assumption. Though these events are not in fact indepen-
dent, we consider that on a theoretical basis, this criterion
has an advantage over that of Cohen et al.

The algorithm is the same as the SumClass strategy, ex-
cepting for step 2, which is as follows:

2) Ix := arg maxx

∏
y:Iy∈{I}(t),x 6=y PREF(Ix, Iy)

4.2 The LOE Methods Based on Regression Tech-
niques

All the orders in the training example are integrated into
one total order. By using regression techniques, the evalua-
tion function used for estimating an item’s rank is derived.
Any unordered items are sorted according to the value of
this function. We use the abbreviation “R” for this method.

At the Learning stage, all items that appear in the train-
ing example set are collected into one item set,{I}C . Next,
the system finds the combined order for the{I}C that is as
consistent with the orders in the training examples as possi-
ble. To derive this combined order,OC , make the set of item
pairsP in the previous section, and calculate the following
preference function:

PREF′(Ix,Iy) = Pr[IxÂIy] =
#(Ix,Iy)+0.5

#(Ix,Iy)+#(Iy,Ix)+1

where#(Ix, Iy) is the number of the item pairs,(Ix, Iy),
in P . By using the strategy ProductClass and the above
functionPREF′, the combined order is derived. Note that
the functionPREF′ is different from the previousPREF
with regard to the dependence on attribute values.

From the orderOC , we then acquire the ranking func-
tion, RANK, that measures the tendency of precedence.
This function is derived by a linear regression technique in
which dummy variables are adopted, also known as theType
I quantification method. One categorical attribute,as(I), is
represented by#as−1 dummy variables. The first attribute
value,vs

1, is transformed into all the0 dummy variables, and
the other values,vs

t , are transformed into dummy variables,
the (t−1)-th element of which is1 and the other elements
of which are0. For example, assume the attributeas(I)
can take3 values. The valuesvs

1 andvs
3 are transformed

into the dummy variables(0, 0) and(0, 1), respectively. All
the variables inA(I) are transformed into dummy variables,
and these are concatenated into one vector,d(A(I)). For
each elementI in {I}C , thed(A(I)) is derived. These vec-
tors are combined into the matrixD whosei-th row is the

Table 1. The means of ρs
ALL 3 5 10

SC 0.808 0.667 0.825 0.932
PC 0.808 0.667 0.825 0.932
R 0.802 0.617 0.837 0.950

d(A(Ix)) such that the rank ofIx is i in the orderOC . By
using the followingX, the functionRANK(A(Ix)) is de-
fined asXT d(A(Ix)):

XT = (DT D)−1DT (1, . . . , #IC)T .

At a sorting stage, the true order of an unordered item set
is estimated by sorting the values ofRANK(d(A(I))).

5 Experiments on Artificial Data

We apply the three methods described in the previous
section to artificial data in order to analyze the characteris-
tics of these methods.

We prepared 9 types of universal item sets. The absolute
order for these item sets was decided based on the linear
weight function. For each type of universal item set, we
randomly generated10 different weights. Accordingly, 90
2-tuples of a universal item set and its absolute order were
generated. Furthermore, from each of these tuples, we gen-
erated 9 example sets:#I (the numbers of items) was 3,
5, or 10, and the#EX (the numbers of examples) was 10,
30, or 50, respectively. In total, 810 example sets were gen-
erated. All the data sets were noiseless; that is, all the true
orders were consistent with the absolute order.

As the testing procedure, we adopted a leave-one-out
(LVO) test; that is, a#EX-fold cross-validation test. As
an error measure, we adopted theρ between the estimated
order and the absolute order.

Table 1 shows the means of theρs. The column labeled
“ALL” shows the mean over all 810 example sets, and the
columns labeled 3, 5, and 10 show the means over the ex-
ample sets composed of the item sets whose sizes were 3, 5,
and 10, respectively. Overall, in accordance with increase
in the size of the item sets, the more proper orders are es-
timated. For theρ between two random orders lengths of
which are#I, it is known that

ρ
√

(#I − 2)/(1− ρ2)

follows the Studentt-distribution with degree of freedom
#I−2. Based on this fact, we could check whether, on av-
erage, proper orders were estimated or not. All three meth-
ods can produce the proper orders when#I=10 at a signif-
icance level of1%. In short, all three methods work well
when item sets are large.
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Table 2. The t-values between ρs
ALL 3 5 10

SC−PC −0.1472 −0.2709 0.3806 −1.5912
SC−R 1.4430 4.4143 −2.2272 −8.5784
PC−R 1.4626 4.4254 −2.3547 −8.5023

We next applied pairedt-tests to determine the differ-
ences between methods. Theα–β row of Table 2 shows the
t-values for theα method’sρ minus theβ method’sρ. The
overline (underline) indicates that methodα (β) is superior
at the significance level of1%. The columns are the same
those in Table 1. The SC and the PC methods were approx-
imately equal in terms of accuracy. However, we consider
that the PC method is preferable because it has a theoretical
advantage. Although the R method is significantly inferior
when item sets are small, the R method surpasses the other
two methods as the sizes of the item sets grow. From an-
other experimental result not presented here due to lack of
space, it seems that this phenomenon is due to the degree of
transitive consistency among the precedence events.

Additional experimental results demonstrated the perfor-
mance of the SC and the PC methods. These methods adopt
a greedy search to find the order that maximizes the sum or
the product of thePREF values; thus, the optimal solution
may not be acquired. The degree to which the performance
by this solution, compared with the optimal solution, is ex-
amined. By applying the pairedt-test to the optimalρ minus
the greedyρ, we obtain at-value of−2.7915 for the SC and
−2.9306 for the PC. Surprisingly, this means that the solu-
tion by the optimal search is significantly worse than that
by the the greedy search. Namely, an effort to preserve the
pairwise precedence information does not lead to an order
minimizing the rank correlation. This result enhances the
distinction between our LOE task and that of Cohen et al.
as described in Section 2.

6 Experiments on Realistic Data

We applied the methods in Section 4 to more realistic
data in the form of answers to a small questionnaire. We
surveyed subjects on their preferences ofsushi (Japanese
food). We asked 52 people to sort 10 types of sushi accord-
ing to his/her preference. Each item (i.e., a specific type of
sushi) is described by five attributes, each of which can take
three to five attribute values.

We first generated all possible combinations (i.e.,
25−1=31 combinations) of attributes. For each combina-
tion and each of the three methods, we applied the LVO test
and derived the means of theρs between the true orders and
the estimated orders. For each method, we selected the best
combinations of attributes based on these means of theρs.

The means by using the best combinations are as follows:

SC PC R
0.451 0.454 0.455

For the orders estimated by all of the three methods, we
observed a correlation between the estimated and the true
orders at a significance level of 10%, on average.

The t-values for the differences between theρs derived
by two different methods are as follows:

SC−PC SC−R PC−R
−0.1807 −0.3098 −0.1002

We found no statistically significant differences among the
three methods. An advantage of the R method was observed
in the results on artificial data when the size of item sets are
10, but no such advantage was observed in this result. This
is because sufficient examples are available relative to the
size of the universal item set, and any method can therefore
successfully derive high-quality orders. This was confirmed
by the fact that all three methods estimated similar orders.

Finally, it should be noted that by observing the esti-
mated orders and other related data, we can perform further
analysis. For example, the survey answers revealed that the
most preferred type of sushi istoro (fatty tuna). Since theρ
between the estimated order by the R method and my (the
first author’s) preference order is0.842, it can be concluded
that I have a highly typical tendency in terms of preference
of sushi type.

7 Conclusion

We proposed a new learning task and presented its solu-
tion methods. We intend to develop the LOE technique so
that it can be used to estimate order while directly minimiz-
ing theρ error.

References

[1] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to
order things. J. of Artificial Intelligence Research, 10:243–
270, 1999.

[2] H. Kazawa, T. Hirao, and E. Maeda. Ranking SVM and its ap-
plication to sentence selection. InProc. of 2002 Workshop on
Information-Based Induction Sciences, 2002. (in Japanese).

[3] M. Kendall and J. D. Gibbons.Rank Correlation Methods.
Oxford University Press, fifth edition, 1990.

[4] H. Mannila and C. Meek. Global partial orders from sequen-
tial data. InProc. of The 6th Int. Conf. on Knowledge Discov-
ery and Data Mining, pages 161–168, 2000.

[5] T. M. Mitchell. Machine Learning. The McGraw-Hill Com-
panies, 1997.

[6] Y. Sai, Y. Y. Yao, and N. Zhong. Data analysis and mining in
ordered information tables. InProc. of the IEEE Int. Conf. on
Data Mining, pages 497–504, 2001.

Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02) 
0-7695-1754-4/02 $17.00 © 2002 IEEE 


