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Abstract. We propose a method of using clustering techniques to partition a set of
orders. We define the term order as a sequence of objects that are sorted according
to some property, such as size, preference, or price. These orders are useful for,
say, carrying out a sensory survey. We propose a method called the k-o’means
method, which is a modified version of a k-means method, adjusted to handle
orders. We compared our method with the traditional clustering methods, and
analyzed its characteristics. We also applied our method to a questionnaire survey
data on people’s preferences in types of sushi (a Japanese food).

1 Introduction

Clustering is a task to partition a sample set into clusters which have the properties
of internal cohesion and external isolation [1], and is a basic tool for exploratory data
analysis. Almost all of the traditional methods for clustering are designed to deal with
sample sets represented by the attribute vectors or similarity matrices [2]. These cluster-
ing methods, therefore, are not suited for handling other types of data. In this paper, we
propose a clustering technique for partitioning one such type of data, namely orders.

We define the term order as a sequence of objects that are sorted according to some
property. For example, given three objects, x1, x2, and x3, one example of the order
is the sequence x3�x1�x2, which is sorted according to an individual’s preference.
An example in which performing the clustering of orders would be useful would be in
completing a questionnaire survey on preferences in foods. The surveyor presents some
kinds of foods to each respondent, and requests that he/she sort the foods according
to his/her preference. By clustering these preference data, the surveyor would be able
to find groups which have the same preference tendency. For such a sensory survey,
it is typical to adapt the Semantic Differential (SD) method [3]. In this method, the
respondents’ preferences are measured by a scale, the extremes of which are symbolized
by antonymous adjectives. For example:

like 5 4 3 2 1 dislike

A proper interpretation of these responses should be, for example, that respondents prefer
the objects categorized as “5” to the objects categorized as “4”. However, due to lack of
analysis techniques, it is common to assume that all respondents share an understanding
of this scale’s range, intervals, and extremes [4]. Such an unrealistic assumption can be
avoided by introducing order responses. We therefore developed a clustering technique
for orders.
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We formalize this clustering task in Section 2. Our clustering methods are presented
in Section 3. The experimental results are shown in Section 4. Section 5 summarizes our
conclusions.

1.1 Related Work

Clustering techniques for partitioning time series data have been previously proposed
[5,6,7]. Though both orders and time series data are sequences of observations, there is
an important difference between them. The same observations can appear in the same
sequences of time series data, but cannot appear in the orders. Therefore, these clustering
techniques are not suited for dealing with orders.

The pioneering work of handling orders is Thurstone’s law of comparative judgment
[8]. Thurstone proposed a method of constructing a real-value scale from a given set of
pairwise precedence information, that indicates which object precedes the other between
two objects. Recently, there has been active research in the processing of orders. Cohen
et al. [9] and Joachims [10] proposed a method to sort attributed objects associated with
pairwise precedence information. Kamishima and Akaho [11] and Kazawa et al. [12]
studied the learning problem from ordered object sets. Mannila and Meek [13] tried to
establish the structure expressed by partial orders among a given set of orders. Sai et al.
[14] proposed association rules between order variables. However, since we don’t know
of a clustering method for orders, we advocate this new technique in this paper.

2 Clustering Orders

In this section, we formalize a task of clustering orders. An order is defined as a sequence
of objects that are sorted according to some property, such as size, preference, or price.An
object xa corresponds to an object, entity, or substance to be sorted. The universal object
set, X∗, consists of all possible objects. The order is denoted by O=x1�x2� · · · �x3.
The transitivity is preserved in the same order, i.e., if x1�x2 and x2�x3 then x1�x3.
To express the order of two objects, x1�x2, we use the sentence “x1 precedes x2.”
Xi ⊆ X∗ denotes the object set that is composed of all the objects that appear in the
order Oi. Let |A| be the size of the set A, then |Xi| is equal to the length of the order Oi.
The order Oi is called a full-order if Xi = X∗, and is called a sub-order if Xi ⊂ X∗.

The task of clustering orders is as follows. A set of sample orders, S = {O1 , O2 ,
. . . , O|S|} is given. Note that it is allowed to be Xi �= Xj(i �= j). In addition, even if
x1 � x2 in the order Oi, it may be x2 � x1 in the order Oj . The aim of clustering is
to divide the S into a partition. The partition, π = {C1 , C2 , . . . , C|π|}, is a set of all
clusters. Clusters are mutually disjoint and exhaustive, i.e., Ci ∩Cj = ∅ ,∀i ,j ,i �= j and
S = C1∪C2∪· · ·∪C|π|. Partitions are generated such that the orders in the same cluster
are similar (internal cohesion), and those in the different clusters are dissimilar (external
isolation). The similarity measure of orders and our clustering method is presented in
the next section.
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3 Methods

We modified a well-known clustering algorithm k-means so as to be able to deal with
orders. We named this modified method the k-o’means.

3.1 Similarity between Two Orders

To measure the similarity between two orders, we adopted Spearman’s Rank Correlation,
which is denoted by “ρ” [15]. The ρ is the correlation between ranks of objects. The rank,
r(O , x), is the cardinal number that indicates the position of the object x in the order
O. For example, for the order O=x1�x3�x2, the r(O , x1)=1 and the r(O , x2)=3.
The ρ between two orders, O1 and O2, consisting of the same objects (i.e., X1 = X2)
is defined as:

ρ =

∑
x∈X1

(
r(O1 , x) − r̄1

)(
r(O2 , x) − r̄2

)

√∑
x∈X1

(
r(O1 , x)−r̄1

)2
√∑

x∈X1

(
r(O2 , x)−r̄2

)2
,

where r̄i = (1/|X1|)
∑

x∈Xi
r(Oi ,x). If no tie in rank is allowed, this can be calculated

by the simple formula:

ρ = 1 − 6 × ∑
x∈X1

(
r(O1 , x) − r(O2 , x)

)2

|X1|3 − |X1| .

The ρ becomes 1 if two orders are coincident, and −1 if one order is a reverse of the
other order. The ρ is designed for the two orders consisting of the same objects. In the
case of the clustering task in Section 2, the object in one order may not appear in another
order. We thus derived the rank correlation from the objects included in both orders, and
ignored the rest of the objects. For example, two orders were given:

O1 =x1�x3�x4�x6, O2 =x5�x4�x3�x2�x6.

From these orders, all the objects that were not included in the other orders were elimi-
nated. The generated orders were:

O′
1 = x3�x4�x6, O′

2 = x4�x3�x6.

The ranks of objects in these orders were:

r(O′
1 , x3) = 1, r(O′

1 , x4) = 2, r(O′
1 , x6) = 3;

r(O′
2 , x3) = 2, r(O′

2 , x4) = 1, r(O′
2 , x6) = 3.

Consequently, the ρ was

ρ = 1 − 6
(
(1−2)2 + (2−1)2 + (3−3)2

)

33 − 3
= 0.5.

Note that if no common objects existed between the two orders, the ρ = 0 (i.e., no
correlation). Over or under estimations in similarities will be caused by this heuristic
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of ignoring objects. However, if Xi are randomly sampled from X∗, the expectation of
the observed similarities will be the equivalent to true similarity. Therefore, such over
or under estimations can be treated as same as the other types of noises.

To use for the clustering task, distance or dissimilarity is more suitable than similarity.
We defined a dissimilarity between two orders based on the ρ:

d(O1 , O2) = 1 − ρ. (1)

Since the range of ρ is [−1,1], this dissimilarity ranges [0,2]. This dissimilarity becomes
0, if two orders are equivalent.

We comment on the reason for adopting Spearman’s ρ as a similarity measure.
Similarities between orders are based on one of the following two quantities. The one is
the differences between ranks of objects. The Spearman’sρ is an example of this type. The
other is the number of discordant object pairs among all object pairs. Formally, an object
pair, xa and xb, is discordant if r(O1,xa) < r(O1,xb) and r(O2,xa) > r(O2,xb), or vice
versa. The Kendall’s τ is an example of this type. Though the computational complexity
of the former quantity is O(|X|), that of the later is O(|X|2). The Spearman’s ρ can be
calculated faster, so we adopt this as a similarity.

3.2 Order Means

Before describing the algorithm of k-o’means, we would like to give the definition of
an order mean.

In the case of k-means, the mean of the cluster C is derived such that

x̄ = arg min
xi

∑

xj∈C

‖xi − xj‖,

where xi are data points, C is a cluster, and ‖ · ‖ is the L2 norm. We extend this notion
so as to fit for orders. That is to say, by employing Equation (1) as the loss function, we
define an order mean, Ō, as follows:

Ō = arg min
Oj

∑

Oi∈C

d(Oi , Oj). (2)

Note that the order mean consists of all objects in all the orders in the C, that is X̄ =
∪Oi∈CXi.

If every order consists of all the objects in X∗ (i.e., Xi = X∗ , ∀i), the order means
are derived by the Borda rule in the 18th century. The rule is equivalent to the following
algorithm:
1) For each object xa in the X∗, calculate the following value:

r̃∗(xa) =
1

|C|
∑

Oi∈C

r(Oi , xa). (3)

2) By sorting objects according to the r̃∗(xa) in ascending order, the order mean of C
can be derived.
Note that, if r̃∗(xa) = r̃∗(xb) , xa �= xb, either xa�xb or xb�xa is allowed.
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The proof of the optimality of this algorithm is as follows: First, we relax the limi-
tations of ranks. While the strict ranks take one of 1 , . . . , |X|, the relaxed ranks, r̃(x),
are real number and satisfy the condition:

∑

x∈X

r̃(x) =
|X|∑

i=1

i.

Clearly, strict ranks satisfy this condition. Since all the |Xi| are equal, Equation (1)
is proportional to the sum of the squared difference between the ranks of two orders.
Therefore, the optimal relaxed ranks can be found by minimizing:

∑

Oi∈C

∑

x∈X∗
(r̃(x) − r(Oi , x))2.

This is minimized at r̃(x) = r̃∗(x) , ∀x in Equation (3). We then have to find the
strict order, Oj , that minimizes the error. Minimizing the Equation (2) is equivalent to
minimizing:

∑

Oi∈C

∑

x∈X∗

(
r(Oj , x) − r(Oi , x)

)2

=
∑

Oi∈C

∑

x∈X∗

(
r(Oi , x) − r̃∗(x))

)2+|C|
∑

x∈X∗

(
r̃∗(x) − r(Oj , x)

)2
. (4)

Since the first term is already minimized, the strict order mean Ō corresponds to the
strict order Oj that minimizes the second term. We next show that the order mean Ō is
equivalent to Õ∗, that is the order sorted according to r̃∗(x). Assume that there is at least
one discordant pair of objects between Ō and Õ∗. Formally, there exists an object pair,
xa and xb, such that

(
r̃∗(xa) − r̃∗(xb)

)(
r(Ō , xa) − r(Ō , xb)

)
< 0.

Let d1 be the second term of the Equation (4) in this case. By swapping these objects
only in the order mean, this error becomes d2. Then,

d1 − d2 = −2|C|(r̃∗(xa) − r̃∗(xb))(r(Ō , xa) − r(Ō , xb)
)

> 0.

The fact that the error decreases by swapping objects is contradicted by the assumption
that Ō is an order mean. Therefore, the order mean must not be discordant with Õ∗.
Consequently, the above algorithm leads the order mean.

Unfortunately, it is practically a rare situation in which all orders consist of the same
object set. If such conditions are not satisfied, the above algorithm cannot be applied. The
calculation of the order mean is difficult in this case, since this is a discrete optimization
problem. Instead of deriving a strictly optimal solution, we investigated several ad-hoc
methods. We tried the methods in [11], such as the one compatible to Cohen’s greedy
methods [9]. As a result of the empirical comparisons, we found that the following
method based on Thurstone’s model achieved less error in Equation (2) than the others.
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The Thurstone’s law of comparative judgment (case V) [8] is the generative model of
orders. This model assumes that the score R(xa) is assigned to each object xa. The orders
are derived by sorting according to the score. The scores follow the normal distribution,
i.e., R(xa) ∼ N(µa ,σ), where µa is the mean score of the object xa and σ is a common
constant standard deviation. Based on this model, the probability that object xa precedes
the xb is

Pr[xa�xb] =
∫ ∞

−∞
φ(

t − µa

σ
)
∫ t

−∞
φ(

u − µb

σ
)du dt

= Φ

(
µa − µb√

2σ

)

, (5)

where φ(·) is a normal distribution density function, and Φ(·) is a normal distribution
function. Accordingly,

µa − µb =
√

2σΦ−1(Pr[xa�yb]
)
.

The µa is rescaled into µ̄a by dividing
√

2σ, and the origin is set to the mean of µ̄1 ,
. . . µ̄|X̄|, i.e.,

∑
xa∈X̄ µ̄a = 0. To estimate these means, Thurstone’s paired comparison

method tries to minimize the function:

Q =
∑

xa∈X̄

∑

xb∈X̄

(

Φ−1(Pr[xa�xb]
) − (µ̄a − µ̄b)

)2

.

To minimize the Q, it is differentiated by µ̄a:

∂Q

∂µ̄a
= − 2

∑

xb∈X̄

(

Φ−1(Pr[xa�xb]
) − (µ̄a−µ̄b)

)

=0.

This formula is derived for each xa=x1 , . . . , x|X̄|. By solving these linear equations,
we obtain

µ̄a =
1

|X̄|
∑

xb∈X̄

Φ−1(Pr[xa�xb]
)
. (6)

The order means can be derived by sorting according to these µ̄a. To derive these values,
we have to estimate the Pr[xa�xb] from the orders in the cluster, C. This probability is
estimated by the following process. From the order O in the cluster, all the object pairs,
(xa ,xb), are extracted such that xa precedes xb in the order. For example, from the order
O = x3�x1�x2, three object pairs, (x3 , x1),(x3 , x2), and (x1 , x2), are extracted.
Such pairs are extracted from all |C| orders in the cluster, and are collected into the set
PC . As the probability Pr[xa�xb], we adopted the following Bayesian estimator with
Dirichlet prior distribution in order that the probability remains at non-zero:

Pr[xa�xb] =
|xa , xb|+0.5

|xa , xb|+|xb , xa|+1
,

where |xa , xb| is the number of the object pairs, (xa , xb), in PC .
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Note that, the calculation time for one order mean is O(|X̄|2|C|), since the counting
up time for deriving Pr[xa�xb] is O(

∑|C|
i |Xi|2) ≤ O(|X̄|2|C|), the estimation time of

µ̄a for all xa ∈ X̄ is O(|X̄|2), and the sorting time is O(|X̄| log |X̄|).
Finally, we comment on the method for estimating µ̄a based on the maximum like-

lihood principle (e.g., in [16]). Similar to the original k-means, our k-o’means depends
on the the initial partition. To cancel this unstable factor, one has to select the best result
among a number of trials. The maximum likelihood based method is a kind of gradient
decent, so the resultant order also depends on a initial state. More trials are required to
cancel this unstable factor. Moreover, since such an iterative method is time-consuming,
we adopted the above non-iterative method.

Algorithm k-o’means(S, k, maxIter)
S = {O1 , . . . , O|S|}: a set of sample orders
k: the number of clusters
maxIter: the limit of iteration times
1) initial partition: S is randomly partitioned into π = {C1 , . . . , Ck}, π′ := π, t := 0
2) t := t + 1, if t > maxIter then goto step 6
3) for each cluster Cj ∈ π, derive the order means Ōj by the procedure in Section 3.2
4) for each order Oi in S, assign it to the cluster: arg minCj d(Ōj , Oi)
5) if π = π′ then goto step 6 else π′ := π, goto step 2
6) output π

Fig. 1. The k-o’means algorithm

3.3 k-o’means

The k-o’means algorithm is the same as the well-known k-means algorithm, except
for the notion of a mean and dissimilarity. The algorithm is shown in Figure 1. First,
initial clusters are generated by randomly partitioning S. These clusters are improved by
iteratively performing two steps: deriving the order mean for each cluster, and assigning
each order to the nearest cluster. If the number of iterations exceeds the threshold or the
partitions do not change, the algorithm stops and outputs the current partition. Note that,
as the original k-means algorithm, the k-o’means cannot find the global optimal solution.
Therefore, multiple partitions are derived by starting from different initial partitions, and
then select π minimizing:

∑

Ci∈π

∑

Oj∈Ci

d(Ōi , Oj). (7)

We here comment on the time complexity of this algorithm. First, the calculation
time for k order means is O(|X∗|2|S|), since one mean is calculated in O(|X̄|2|C|) time
(see Section 3.2), |C| ≈ |S|/k, and |X̄| ≤ |X∗|. Second, the time for the assignment
of one order is O(|Xi|k), because dissimilarity is derived for each of the k clusters
and one dissimilarity is calculated in O(|Xi|) time. Thus the total assignment time is
O(

∑|S|
i |Xi|k) ≤ O(|X∗||S|k). Since the number of iteration times is constant, the time
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complexity of one iteration is equivalent to the total complexity. Consequently, the total
complexity becomes O(|X∗|2|S| + |X∗||S|k). In terms of |S| and k, this is equivalent
to that of the original k-means. However, in terms of |X∗|, the complexity is quadratic.

4 Experiments

We applied our k-o’means algorithm to two types of data: artificially generated data and
real preference survey data. In the former experiment, we compared our k-o’means and
the traditional hierarchical clustering method using the dissimilarity of Equation (1). In
addition, by applying the k-o’means to data which had various properties, we revealed
the characteristics of this algorithm. In the latter experiment, we analyzed a questionnaire
survey data on preferences in sushi (a kind of Japanese food). We used the k-o’means
algorithm exploratory tools for analysis. Note that, in the experiments described below,
Thurstone’s method is used for deriving the order means since Xi are always proper
subsets of X∗.

4.1 Evaluation Criteria

Before reporting the experimental results, the evaluation criteria for partitions will be
described. In this section, the same object set was divided into two different partitions:
π∗ and π̂. We present two criteria to measure the difference of π̂ from π∗.

The first measure is called purity, and is widely used (e.g., in [17]). Assume that
the objects in cluster C∗

i ∈ π∗ are classified into the true class labeled i. If all the
objects in the Ĉi ∈ π̂ classified into the majority true class, the purity corresponds to
the classification accuracy. Formally speaking, the purity is defined as:

purity =
1

|S|
∑

Ĉi∈π̂

(

max
C∗

j ∈π∗
|Ĉi ∩ C∗

j |
)

. (8)

The range of the purity is [0 , 1], and becomes 1 if two partitions are identical.
Though this purity is widely used, its lower bound changes according as π∗, and

the resulting scale normalization problem makes it difficult to use this as the basis for
calculating the means of these criteria. Therefore, we introduce the second criteria, the
ratio of information loss (RIL) [18], which is also called the uncertainty coefficient
in numerical taxonomy literature. The RIL is the ratio of the information that is not
acquired to the total information required for estimating a correct partition. This criterion
is defined based on the contingency table for indicator functions [2]. The indicator
function I((xi ,xj) ,π) is 1 if an object pair (xi ,xj) are in the same cluster, and 0 if they
are in different clusters. The contingency table is a 2 × 2 matrix consisting of elements
ast, that are the number of object pairs satisfying the condition I((xi , xj) , π∗)=s and
I((xi , xj) , π̂)=t, among all the possible object pairs. RIL is defined as

RIL =

∑1
s=0

∑1
t=0

ast

a··
log2

a·t
ast∑1

s=0
as·
a··

log2
a··
as·

, (9)

where a·t =
∑1

s=0 ast, as· =
∑1

t=0 ast, and a·· =
∑1

s=0
∑1

t=0 ast. The range of the
RIL is [0 , 1], and becomes 0 if two partitions are identical.
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4.2 Experiments on Artificial Data

Data Generation Process. We applied the k-o’means to artificial data in order to
compare it with traditional clustering methods and to analyze the method. Test data
were generated in the following two steps: In the first step, we generated the k of order
means. One random permutation (we called it a pivot) consisting of all objects in X∗

was generated. The other k−1 means were generated by transforming this pivot. Two
adjacent objects in the pivot were randomly selected and swapped. This swapping was
repeated at specified times. By changing the number of swapping times, the inter-cluster
closeness could be controlled.

In the second step, for each of the clusters, its constituent orders were generated.
From the order mean, the |Xi| of the objects were randomly selected. These objects
were sorted so as to be concordant with the order mean. Namely, if xa precedes xb in the
order mean, it should be the case in the generated orders.Again, two adjacent object pairs
were randomly swapped. By changing the number of swapping times, the intra-cluster
closeness could be controlled.

Table 1. Parameters of experimental data

1) the total number of objects: |X∗| = 100
2) the number of sample orders: |S| = 1000
3) the length of the orders: |Xi| = 10
4) the number of clusters: |π| = {2 , 5 , 10 , 50}
5) the swapping times of the order means: {a:∞, b:230000, c:120000}
6) the ratio of the minimum cluster size to the the maximum: {1/1 , 1/2 , 1/5 , 1/10}
7) the swapping times of the sample orders: {a:0 , b:30 , c:72}

The parameters of the data generator are summarized in Table 1. The parameters
1–3 are common for all the data. |X∗| and |S| are set so as to be roughly the same as
those for the survey data in Section 4.3. If |Xi| is too short, then the differences between
orders cannot be tested. However, it is hard for respondents to sort too many objects.
By considering these factors, we set the order length to 10. The parameter 4 was the
number of clusters. It is difficult to partition if this number is large, since the sizes of
the clusters then decrease. The parameter 5 was the swapping time in the first step of the
data generation process. Three cases were examined. According to the simulation result,
ρ means between a pivot and the other order means were 0.0, 0.1, and 0.3 in the cases
of a, b, and c, respectively. Since the case a was the most separated, it was the easiest
to partition. The parameter 6 controls the deviation of cluster sizes. If the sizes of the
clusters are diverged, the relatively small clusters tend to be ignored. Thus, 1/10 is the
hardest to cluster. The last parameter is the swapping times in the second step of the data
generation process. The means of ρ between a sample order and an order mean was 1.0,
0.715, and 0.442 in the cases of a, b, and c, respectively. ρ between two random orders
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becomes larger than these values with probabilities 0.0, 0.01, and 0.10. Since the case
a is the tightest, it was the easiest to partition.

The number of the total parameter combinations was 4×3×4×3=144. For each
setting, we generated 100 sample sets. Below, we will show the means of purity and RIL
of these sets.

Table 2. The means of purities and of RIL on artificial data

purity RIL
KOM 0.561 (0.3629) 0.705 (0.4105)
AVE 0.466 (0.2966) 0.910 (0.1679)
MIN 0.315 (0.2663) 0.999 (0.0014)
MAX 0.371 (0.2430) 0.994 (0.0112)

Comparison with Traditional Clustering Methods. We compared our k-o’means
algorithm with the traditional hierarchical clustering methods: the minimum distance,
maximum distance, and group average methods. Since data are not represented by at-
tribute vectors, the original k-means cannot partition a set of sample orders. However,
hierarchical methods can partition a set of sample orders by adopting Equation (1) as
dissimilarities between any of the order pairs. We applied our k-o’means and three tradi-
tional algorithms to all 144 types of artificial data. The correct number of clusters were
given as an algorithm’s parameter. The means of purities and RIL are shown in Table 2.
The symbols, KOM, AVE, MIN, and MAX indicate the means derived by the k-o’means, the
group average, the minimum distance, and the maximum distance method, respectively.
In parentheses, standard deviations are also shown. Clearly, our k-o’means is superior to
the other three methods. According to the paired t-test between the k-o’means and each
of the other three methods, the difference is significant, even at the significance level
of 0.1%. We think that this advantage of the k-o’means is due to the following reasons.
The dissimilarity between an order pair tends to be 1.0, since common objects are found
infrequently. However, our k-o’means adopted a notion of an order mean. Since order
means are derived from far more orders than two, common objects can be found far
more frequently. In other words, while the traditional methods are based on only local
information, the k-o’means can capture more global features of clusters. In addition, it
is well known that a minimum or a maximum are not robust against the outliers, due to
effects such as chaining [1].

Effects of Data Parameters. We next show the characteristics of the k-o’means ac-
cording to the changes of the parameters 4–7 in Table 1. Table 3 shows the means of
the purities and of the RIL on each of the data groups that are separated on the specific
parameter. For example, in the column labeled “2” in Table 3(a), the means of purities
the and of the RIL on 36 types of sample sets whose parameter 4 is 2, i.e., |π| = 2, are
shown. Overall, parameters 4 and 7 affected partitioning, but the others did not. We will
next comment on each of these parameters.
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Table 3. The means of purities and of RIL on each of the order sets with the same parameters.

(a) parameter 4: the number of clusters
2 5 10 50

purity 0.909 0.705 0.492 0.139
RIL 0.525 0.598 0.697 0.999

(b) parameter 5: inter-cluster closeness
a:∞ (separated) b:230000 c:120000 (close)

purity 0.566 0.566 0.552
RIL 0.695 0.698 0.723

(c) parameter 6: deviation of cluster sizes
1/1 (equal) 1/2 1/5 1/10 (deviated)

purity 0.543 0.547 0.569 0.586
RIL 0.684 0.689 0.710 0.738

(d) parameter 7: intra-cluster tightness
a:0 (tight) b:30 c:72 (scattered)

purity 0.782 0.531 0.370
RIL 0.278 0.843 0.994

Parameter 4: The more the number of clusters increases, the poorer the performance
becomes. If the number becomes 50, it is almost impossible to recover the original
partition, even in the case of tightest intra-cluster closeness (i.e., the parameter 7 is 0).
This can be explained as follows. The number of possible order means can be bounded
|X∗|!. To choose one from these means, log2(|X∗|!)≈525 bits information is required.
Roughly speaking, since the number of permutations of |Xi| objects is |Xi|!, one or-
der provides log2(|Xi|!) bits information. In total, the orders in one cluster provide
|C| log2(|Xi|!)≈(|S|/|π|) log2(|Xi|!)≈436 bits information. Consequently, due to the
shortage of information, fully precise order means weren’t derived.
Parameter 5: Closeness between order means does not affect partitioning so much. We
don’t know the exact reason, but one possible explanation is that order means can easily
be distinguished from each other since they are very long compared to sample orders.
Parameter 6: The original k-means tends to lead to poor partitions if the sizes of clusters
vary, but the k-o’means do not. We think that this is also caused by the above high
distinguishablity between order means.
Parameter 7: It is hard to find partitions consisting of clusters in which intra-cluster
similarities are low. The sample orders are relatively short, so even a low level of noise
affects the partitioning performance a great deal.

4.3 Experiments on Preference Survey Data

We applied our k-o’means to the questionnaire survey data of preference in sushi. Since
notion of true clusters are not appropriate for such a real data, we use the k-o’means
as exploratory analysis tools. We asked each respondent to sort 10 objects (i.e., sushi)
according to his/her preference. Such a sensory survey is a very suitable area for analysis
based on orders. The objects were randomly selected from 100 objects according to
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Table 4. Summaries of partition on sushi data

Attributes of Clusters C1 C2

|C|: the numbers of respondents 607 418
A1 : preference to heavy tasting sushi 0.4016 −0.1352
A2 : preference to sushi users infrequently eat −0.6429 −0.6008
A3 : preference to expensive sushi −0.4653 −0.0463
A4 : preference to sushi fewer shops supply −0.4488 −0.2532

their probability distribution, based on menu data from 25 sushi shops found on the
WWW. For each respondent, the objects were randomly permutated to cancel the effect
of the display order to their responses. The total number of respondents was 1039. We
eliminated the data obtained within a response time which was either too short (shorter
than 2.5 minutes) or too long (longer than 20 minutes). Consequently, 1025 data was
extracted.

We use k-o’means as an exploratory tool, and divided the data into two clusters. The
summary of each cluster is shown in Table 4. The results given in the table were the best
in terms of Equation (7) among 20 trials. The first row of the table shows the number of
respondents grouped into each of the clusters. The C1 is a major cluster. The subsequent
four rows show the rank correlation between each order mean and the sorted object list
according to the specific object attributes. For example, the fourth row presents the ρ
between the order mean and the sorted object sequence according to their price. Based
on these correlations, we were able to learn what kind of object attributes affected the
preferences of the respondents in each cluster. We next comment on each of the object
attributes. Note that attributes A1 and A2 were derived from the questionnaire survey by
the SD method, and the others from the menu data.

The attribute A1 (the second row) shows whether the object tasted heavy (i.e., high
in fat) or light (i.e., low in fat). The positive correlation indicate a preference for heavy
tasting. The C1 respondents preferred heavy tasting objects much more than the C2
respondents. The attribute A2 (the third row) shows how frequently the respondent eats
the object. The positive correlation indicates a preference for objects that the respondent
infrequently eats. Both respondents of C1 and C2 prefer the objects they usually eat.
No clear difference was observed between clusters. The attribute A3 (the fourth row)
is the prices of the objects. These were regularized so as to cancel the effects of sushi
styles (hand-shaped or rolled), and differences of price between shops. The positive
correlation indicate a preference for cheap objects. While the C1 respondents preferred
expensive objects, the C2 respondents did not. The attributeA4 (the fifth row) shows how
frequently the objects are supplied at sushi shops. The positive correlation indicates a
preference for the objects that fewer shops supply. Though the correlation of C2 is rather
larger than that of C1, the difference is not statistically significant. Roughly speaking,
the members of the major group C1 prefer more heavy tasting and expensive sushi than
the members of the minor group C2.

Selecting the number of clusters is worth a mention in passing. Since notion of the
optimal number of clusters depend on application of the clustering result, the number
cannot be decided in general. However, it can be considered that dividing uniformly
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distributed data is invalid. To check this, we tested whether the nearest pair of order means
could be distinguished or not. We denote the order means of clusters by Ō1 , . . . , Ō|π|,
and that of the entire sample set S by Ō∗. Let ρab be the rank correlation between Ōa

and Ōb, and ρ∗
a be the rank correlation between Ō∗ and Ōa. First, we found the Ōα and

Ōβ such that the ραβ was the maximum among all pairs of order means. To test whether
the closest (i.e. the most correlated) pair of clusters, Cα and Cβ , should be merged or
not, we performed statistical test of the difference between two correlation coefficients,
ρ∗

α and ρ∗
β . In this case, the next statistics follows the Student t-distribution with the

degree of freedom |X∗|−3:

t = (ρ∗
α − ρ∗

β)

√
(|X∗| − 3)(1 + ραβ)

2(1 − ρ∗
α

2 − ρ∗
β

2 − ραβ
2 + 2ρ∗

αρ∗
βραβ)

.

If the hypothesis ρ∗
α=ρ∗

β is not rejected, these two clusters should be merged and the
number of cluster should be decreased. When partitioning the survey data into two
clusters (i.e. k = 2), t = 9.039. At the significance level of 1%, it could be concluded
that these clusters should not be merged. However, since t = 1.695 when k = 3, these
clusters are invalid and the closest pair of clusters should be merged. Note that any
criteria for selecting the number of clusters are not almighty as pointed in [19], since
the optimality depends on clustered data and the aim of clustering. For example, when
adopting the k-o’means for the purpose of caching [20], the best estimation accuracy
was achieved when k was larger than two.

5 Conclusions

We developed a clustering technique for partitioning a set of sample orders. We showed
that this method outperforms the traditional methods, and presented the characteristics of
our method. By using this method, we analyzed a questionnaire survey data on preference
in sushi.

The time complexity of the current algorithm is quadric in terms of |X∗|, thus this
algorithm is difficult to deal with thousands of objects. We plan to develop the method
to accommodate a much larger universal object set.

It is possible to extend our methods to hierarchical ones. We simply embedded
the dissimilarity of Equation (1) and the order means to the traditional Ward method.
However, the computation is very slow, since the new order mean cannot be derived
from two order means of merged clusters. In addition, the performance was poor. The
mean RIL on the artificial data over 10 trials is 0.894 (compare with Table 2). This is
because fully precise order means cannot be derived if the sizes of clusters are small,
and the sizes of clusters are very small in the early stage of the Ward method. More
elaborate method would be required.
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