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ABSTRACT
A recommender system suggests the items expected to be
preferred by the users. Recommender systems use collab-
orative filtering to recommend items by summarizing the
preferences of people who have tendencies simliar to the user
preference. Traditionally, the degree of preference is repre-
sented by a scale, for example, one that ranges from one to
five. This type of measuring technique is called the semantic
differential (SD) method. We adopted the ranking method,
however, rather than the SD method, since the SD method
is intrinsically not suited for representing individual pref-
erences. In the ranking method, the preferences are repre-
sented by orders, which are sorted item sequences according
to the users’ preferences. We here propose some methods to
recommend items based on these order responses, and carry
out the comparison experiments of these methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering, Information filtering

Keywords
Order, Recommender System, Collaborative Filtering

1. INTRODUCTION
Recommender systems suggest the items expected to be

preferred by the users [14]. These systems are playing an
increasingly important role in business [16]. Collaborative
filtering (CF for short) is one of the methods used to im-
plement recommender systems. CF works according to this
framework: First, the user inputs his/her preference pat-
terns to the system. The system then searches its database
for other people whose preferences are similar to those of the
user. Next, to the user, the system recommends the items
that those people prefer.

Though many methods of CF have been studied, almost
all of these methods adopt the semantic differential (SD)
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method [12] to measure the users’ preferences. In this meth-
od, the user’s preferences are measured by a scale, the ex-
tremes of which are symbolized by antonymous adjectives
and the divisions of which are cardinal numbers. An exam-
ple of this type of scale is :

prefer [ 5 4 3 2 1 ] not prefer

A user represents the degree of his/her preference by choos-
ing a number from 1 to 5. As will be explained in the next
section, this measurement is intrinsically not fit for use to
evaluate individual preferences.

We therefore advocate a CF framework which adopts the
ranking method. In this method, users’ preferences are rep-
resented by orders. An order is an item sequence which
is sorted according to the user’s preference. The system
presents some items to a user, and receives its response of
orders sorted according to the user’s preferences. We will
present several CF methods that can deal with these order
responses. We will experimentally show how our framework
is superior to the traditional one.

We would like to point out that the word nantonac is
originates from a Japanese word, nantonaku, which means
“unable to explain specifically, but I think such and such
is the case.” Since order responses allow a more vague and
intuitive expression of users’ preferences, we decided to call
this type of filtering method nantonac filtering.

We show the framework of the traditional CF method and
our new framework in Section 2. In Section 3, we propose
some CF methods that can be used within this framework.
The experimental results are presented in Section 4, and the
summary in Section 5.

1.1 Merits of Using Order Responses
There are several reasons why the SD method is not ap-

propriate for CF. Before explaining why, it is necessary to
look at a notion in Stevens’ Scales of Measurement [17].
Stevens classified scales into four levels: nominal, ordinal,
interval, and ratio. Among these four levels, we discuss the
ordinal and interval scales. It is possible to more or less de-
terminate the values of the ordinal scales. For example, two
values of the ordinal scales, 2 and 3, are given. An interpre-
tation that “2 is smaller than 3” is appropriate, but that “3
is 1.5 times as much as 2” is inappropriate. On the other
hand, the values of interval scales are allowed to determine
the equality of the intervals. For example, three values of
interval scales, 2, 3, and 4, are given. One proper determi-
nation is that “the difference between 2 and 4 is twice as
much as that between 3 and 4.”

Let’s return to a discussion of the Semantic Differential
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(SD) method [12]. By applying the SD method, we can get
observations represented by ordinal scales. For example, a
user rates the items A and B at 4 and 2, respectively. The
proper interpretation is that the user prefers item A to B.
It should not be interpreted that the user prefers A twice
as much as B. However, due to the lack of an analysis
technique, these scores are of necessity treated as interval
scales, by introducing the following two unrealistic assump-
tions: the divisions of scales are equivalent and all users
share an understanding of scale extremes. Why has the SD
method been effectively used? The SD method should be
intrinsically used for measuring the concepts of a group of
users. For this purpose, even though intervals or extremes
of scales are diverged, this divergence is lessened by averag-
ing over users. However, in CF the system has to deal with
individual preferences, and because of this, the divergence
seriously influences the precision of preference prediction.
If the users’ responses deviate from the standard scale, the
similarities to other people’s responses are incorrectly iden-
tified, and the wrong items are then recommended.

Another drawback of the SD method is the so-called Cen-
tral Tendency effects [12], which are well-known in experi-
mental psychology literature. This phenomenon describes a
tendency to use only the near neutral portion of the rating
scale. Such rater effects also confuse the identification of
preference similarity.

1.2 Related Works
There have been many studies published on CF [1, 9, 10,

11, 13]. Breese et al.’s work [2] is an empirical comparison
survey in this research area. However, all of these methods
employed the SD method to measure users’ preferences.

Recently, there has been active research on the processing
of orders. Cohen et al. [3] and Joachims [4] proposed a
method to sort attributed items associated with pairwise
precedence information. Kamishima and Akaho [5] and Ka-
zawa et al. [7] studied the learning problem from ordered
item sets. Sai et al. [15] proposed association rules between
order variables.

2. COLLABORATIVE FILTERING
We will now describe the traditional CF framework, and

compare it with our new one.

2.1 Traditional Collaborative Filtering
We will first describe the framework of CF developed

as part of the Riedl et al.’s GroupLens project [13]. CF
is a task to predict the preferences of a particular user
(an active user) based on the preference data collected on
other users (a user database). Formally, the task is de-
fined as follows: Let sij be the score of item j by the
user i. The score represents the preference of the user,
and takes one of the values from, for example, {1, 2, 3, 4, 5}.
Xi = {x1, . . . , x|Xi|} denotes a set of items the user i rated

and Si={sij |xj∈Xi}. X∗={x1, . . . , x|X∗|} denotes the set
of all items. Note that |X| is the size of a set X. The user
database, DS = {S1, . . . , S|DS |}, is a set of all Si. We call
the users in the database sample users. Let Sa be the set of
scores rated by the active user, and Xa be the set of items
the active user has already rated. Given the Sa and the DS ,
the CF task is estimating the items that the active user is
expected to rate high. Such items are then recommended to
the active user.

The estimation method of the GroupLens works as fol-
lows: First, the similarity between the active user and the
sample user i in DS is measured by the Pearson correlation:

rai=

�
j∈I(Xai)

�
saj−s̄a

��
sij−s̄i

�
��

j∈I(Xai)

�
saj−s̄a

�2��
j∈I(Xai)

�
sij−s̄i

�2 ,

where Xai=Xa∩Xi and I(X)={j|xj∈X}. s̄i is the mean
score of user i for the items in Xai.

The expected score of the item j for the active user is

ŝaj=s̃a +

�
i∈X̃j

rai

�
sij − s̄i

�
�

i∈X̃j
|rai| , (1)

where s̃a=|Sa|−1�
saj∈Sa

saj and X̃j={i|Si∈DS s.t. sij∈Si}.
The system recommends the items for which the expected
score ŝaj is high.

This algorithm is simple, but very effective. In survey [2],
it performed the best for the data set in which the items were
rated on a 6-level scale. A Bayesian network performs better
than this algorithm if the rating scale is binary (prefer or
not). Because a multi-level scale was used in our experiment,
we chose this algorithm for comparison.

2.2 Nantonac Collaborative Filtering
We will next describe our new framework: nantonac col-

laborative filtering. This framework is the same as the tra-
ditional one described above, except for the representation
of the users’ preferences. Instead of using the set of scores
acquired by the SD method, we adopted the order acquired
by the ranking method. The system shows a set of items,
Xi, to the user i, and the user sorts these items accord-
ing to his/her preferences. The sorted sequences are de-

noted by Oi=x1�x2� · · · �x|Xi|. This indicates that, for
example, the user i prefers item x1 to item x2. The rank,
r(Oi, x

j), is the cardinal number that indicates the position
of the item xj in the order Oi. For example, for the order
Oi=x1�x3�x2, r(Oi, x

1)=1 and r(Oi, x
2)=3. In our frame-

work, the user database is a set of orders sorted by all the
users, DS={O1, . . . , O|DS |}. Let Xa be a set of items sorted
by the active user, and Oa be the sorted order. Given the
Oa and DS , the task of nantonac CF is estimating the items
that the active user is expected to prefer.

3. METHODS
We would like to propose some CF methods for the frame-

work described in Section 2.2. In survey [2], the filtering
methods are categorized: a memory-based method and a
model-based method. To estimate the users’ preferences,
memory-based methods use an entire user database. In
model-based methods, a user database is used for the learn-
ing model for prediction. In addition to these methods, we
also propose a method which is a hybrid of these two meth-
ods. Below, we will show the modified version of the tradi-
tional methods, which has been adjusted to deal with orders.

3.1 Memory-Based Methods
In [2], Breese et al. described two basic methods for mea-

suring similarities between two users by a correlation and a
vector similarity, and several extensions of these methods.
We will describe and present a modified version of these
methods.
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3.1.1 A Simple Correlation Method
In order to carry out CF, it is necessary to measure the

similarities of preferences between the active and the sample
users. In this method, we treat given ranks as scores of
the GroupLens’s method. That is to say, the similarities
between the users are

Rai=

�
xj∈Xai

�
r(Oa, xj) − r̄a

��
r(Oi, x

j) − r̄i

�
��

xj∈Xai
(r(Oa, xj)−r̄a)2

��
xj∈Xai

(r(Oi, xj)−r̄i)
2
, (2)

where Xai=Xa∩Xi and r̄i=|Xai|−1
�

xj∈Xai
r(Oi, x

j). Note
that the items not contained in the other order are ignored,
but the ranks are not renumbered. For example, from the
order Oa = x1�x2�x3, the item x2 is eliminated, but the
rank of x3 remains r(Oa, x3)=3. The system estimates pref-
erences for the item j by the active user by the function:

r̃a+

�
i∈X̃j

Rai

�
r(Oi, x

j) − r̄i

�
�

i∈X̃j
|Rai| , (3)

where r̃a=|Xa|−1�
xj∈Xa

r(Oa, x
j), X̃j={i|Oi∈DS s.t. xj∈Xi}.

The items are sorted in ascending order of these estimated
preferences, and the highly ranked items are recommended.

3.1.2 Default Voting
In [2], three extensions are proposed. Though their ex-

perimental results show that the inverse user frequency ex-
tension is effective, we could not impose this idea onto our
framework. Case amplification extension is not effective so
much, and adopts the subjective parameter tuning; thus we
didn’t implement this. We imposed only the idea of default
voting to our framework.

The idea of default voting is designed for a situation in
which relatively few items are evaluated. According to a
decrease of |Xi| relatively to |X∗|, the frequency of the event,
Xa∩Xi=∅, increases. Since the Rai is always 0 in a case in
which no commonly evaluated items exist, the similarities
between users can no longer be precisely measured. When
deriving similarities between two orders Oa and Oi, if we
assign default ranks to the items either of the user i or the
active user evaluated, then the similarities can be calculated
over Xa ∪ Xi. Similar to [2], we give neutral preferences to
these items. The items that are not in one order are inserted
into the middle of the order. For example, the responses of
the active user the user i are Oa = x1�x3�x6 and Oi =
x5�x3�x2�x6, respectively. The items evaluated only by
the other user is inserted: O′

a = x1�x3�x2∼x5�x6 and
O′

i = x5�x3�x1�x2�x6 (∼ denotes the tie in rank). To
all tied items, we give the same rank, which is the mean of
these ranks. For example, the items x5 and x2 which are
at the 3rd and 4th positions in the order O′

a, are tied, thus
The rank of these items are 3.5. The similarities between
O′

a and O′
i are calculated by Equation (2). The expected

preference is derived by Equation (3), except that r(O′
i, x

j)
is used instead of r(Oi, x

j). The other procedures are the
same as those described in Section 3.1.1.

3.2 Model-Based Methods
In [2], the two model-based method is provided: a cluster

model and a Bayesian Network model. Since we do not know
the Bayesian Network designed for dealing with orders, only
the cluster model was examined.

Algorithm k-o’means(S, k, maxIter)
S = {O1, . . . , O|S|}: a set of orders
k: the number of clusters
maxIter: the limit of iteration times
1) S is randomly partitioned into a set of clusters

π = {C1, . . . , Ck}, π′ := π, t := 0.
2) t := t + 1, if t > maxIter goto step 6.
3) for each cluster Cj ∈ π, derive the order means Ōj

by the procedure in Section 3.2.
4) for each order Oi in S, assign it to the cluster:

arg minCj d(Ōj , Oi).
5) if π = π′ then goto step 6

else π′ := π, goto step 2.
6) output π.

Figure 1: The k-o’means algorithm

The k-o’means [6] is the algorithm for clustering orders.
We here simply describe this algorithm in Figure 1. The k-
o’means is the same as the well-known k-means algorithm,
except for the notions of a dissimilarity and a mean. We
define a dissimilarity based on the ρ between two orders
as d(Oi, Oa) = 1 − ρ. The ρ denotes a widely used simi-
larity of orders, the Spearman’s Rank Correlation [8]. For
the two orders Oi and Oa consisting of the same item set
(i.e., Xi=Xa), the ρ between the two orders is equal to the
Equation (2). The ρ becomes 1 if the two orders are coinci-
dent, and −1 if one order is a reverse of the other order. If
Xi �=Xa, the items not contained in the other order are again
eliminated, but the ranks are renumbered. For example, if
the item x3 is eliminated from the order x1�x3�x4�x6, the
rank of the item x6 changes from 4 to 3. Note that if no
common items exist between the two orders, the ρ = 0 (i.e.,
no correlation).

As a mean, we used the following notion of the order mean,
that is a representative of given orders. For a set of orders,
C, the order mean is defined as

ŌC = arg maxOj

�
Oi∈C ρij. (4)

Unfortunately, the method to derive the optimal solution of
Equation (4) could not be developed. Instead, the follow-
ing method based on Thurstone’s paired comparison, which
gives a good performance empirically. First, the probabil-
ity Pr[xa�xb] is estimated. From the order Oi ∈ C, all the
item pairs, (xa, xb), are extracted such that xa precedes xb

in the order. For example, from the order Oi = x3�x1�x2,
three item pairs, (x3, x1), (x3, x2), and (x1, x2), are ex-
tracted. Such pairs are extracted from all |C| orders, and
are collected into the set PC . As the probability Pr[xa�xb],
we adopted the following Bayesian estimator with Dirichlet
prior distribution in order that the probability remains at
non-zero:

Pr[xa�xb] =
|xa, xb|+0.5

|xa, xb|+|xb, xa|+1
,

where |xa, xb| is the number of the item pairs (xa, xb) in PC .
Then, for each item that appears in some order in the C,
(i.e., XC =

�
Oi∈C Xi), the following µa are calculated:

µa =
1

|XC |
�

xb∈XC

Φ−1
�
Pr[xa�xb]

�
,
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where Φ(·) is a normal distribution function of N(0, 1). By
sorting the items according to these µa, the order mean is
approximated.

The recommendation process is as follows: Before recom-
mendation, the database DS is divided into the partition
πDS = {C1, . . . , C|πDS

|} by the k-o’means. Given the active

user’s order, Oa, the system calculates the above dissimi-
larities between the Oa and each order mean of clusters in
the πDS , and the most similar cluster is found. The system
then recommends the highly ranked items in the most simi-
lar order mean. Note that since the output of the k-o’means
depends on the initial partitions, we chose the partition that
achieved the minimum sum of dissimilarities among 10 trials
in the experiment described in Section 4.

3.3 Hybrid Methods
We examined the hybrid methods of memory-based and

model-based methods. The cluster models combined with
the simple rank correlation method.

The original memory-based algorithm calculates the sim-
ilarities between the active user and each user in the entire
user database. In this hybrid method, first the most similar
cluster C∗ is found by the procedure described in Section 3.2.
Then active user’s preference is predicted only from the user
data in the C∗, and the rest of the data is ignored.

4. EXPERIMENTS
To compare the above CF methods, we applied these

methods to sushi preference data.

4.1 The Data Collection Procedure
Before describing the data collection procedure, we would

like to explain why we chose to use preferences in sushi (a
Japanese food) as a testbed. First, there are many types of
sushi, and preferences are different for each person. In addi-
tion, since users have fewer privacy concerns about express-
ing their preferences in sushi, the data was easily collected.

The preference data were collected using the following pro-
cedure. Before collecting the data, we surveyed menu data
from 25 sushi restaurants found on the WWW. For each
type of item (i.e., type of sushi sold at the restaurant), we
counted the number of restaurants that offered the item.
From these counts, we derived the probabilities that each
item would be supplied. By eliminating unfamiliar or low
frequency items, we came up with a list of 100 items. This
item set corresponds to X∗ in Section 2.1.

We generated two item sets, which were presented as Xi

to each user. The type A set (XA) was common for all
users. We chose the following 10 popular items: Shrimp,
Sea eel, Tuna, Squid, Sea urchin, Salmon roe, Egg, Fatty
tuna, Tuna roll and Cucumber roll. This set was used for
testing. The other type B sets (XB

i ) were different for each
user. Ten items were randomly selected from X∗ according
to the above probability distribution. The orders in this
item set were treated as user responses. Note that the XA

and the XB
i had overlap of 2.41 items per order on average.

We collected the responses via a commercial WWW sur-
vey service. The following queries were presented:
1) We asked each user i to sort items in the XA according
to his/her preference. The user selected ranks of presented
items through the WWW interface. The response order was
denoted by OA

i .
2) We asked the users i to rate their preferences in items of

XB
i by the SD method using a five point scale. The response

scores were denoted by SB
i .

3, 4) Next, two questions were irrelative to preferences.
These two questions lessened the influence of query 2 on
query 5.
5) We asked the user i to sort the items in the XB

i set
according to his/her preference. The response order was
denoted by OB

i .
The total number of responses collected was 1039. We

eliminated the data obtained within a response time which
was either too short or too long. Consequently, the data set
includes 1025 tuples: (OA

i , OB
i , SB

i ). We performed a pre-
liminary experiment to compare two types of responses. We
derived the ratio of responses in which there exists contra-
diction between SB

i and OB
i . Here, the contradiction means

that, though the item xa precedes the xb in OB
i , the score of

xb in SB
i is rated higher than that of xa. We found such con-

tradictions in 70% of the tuples. This result at least shows
that different aspects of preference can be captured by the
ranking and SD methods.

4.2 The Evaluation Procedure and Criterion
To evaluate each method, we applied the 10-fold cross

validation test. The training and the test sets are denoted
by D̄′ and D′, respectively. As described above, a data set
D was composed of tuples: (OA

i , OB
i , SB

i ). The SB
i and OB

i

were used for a traditional CF and for ours, respectively.
The set, which consists of all the OB

i (or SB
i ) in the D̄′, was

treated as a user database DS . Each OB
i (or SB

i ) in the D′

was picked up in turn, and the picked order (or score) was
considered as the active users response OB

a (or SB
a ). Given

the DS and the OB
a (or SB

a ), the system predicted the order
of items in the XA (the type A item set) sorted according to

the active user’s preference. Let ÔA
i be the predicted order.

The ÔA
i is compared with the true response order OA

i in
the D′. To measure the quality of the predicted order, ρ
between the ÔA

i and the OA
i as used in [10].

In order to investigate the changes in user database sizes,
we generated three sets, sizes (denoted by |D|) of which are
1025, 500, and 300, respectively. Similarly, by randomly
eliminating items from the XB

i and renumbering the ranks
of these items, we changed the sizes of item sets XB

i to 10,
7, 5, 3, and 2.

4.3 Experimental Results
We applied the evaluation procedure in the previous sec-

tion to each of the methods described in Section 2.1 and 3.
These methods are denoted by the symbols: SCR (Sec. 2.1),
RCR (Sec. 3.1.1), CLS (Sec. 3.2), and HCR (Sec. 3.3).

As described in Section 4.1, the item sets XA and XB
i can

be overlapped. We didn’t abandon these overlapped items
because the preference orders have to be predicted, even if
the ranks or scores of items in the XB

i are given. These
overlapped items were treated as follows. In the case of the
SCR method, since the scores were rated with common scales,
the score given in the SB

i was used as the expected score.
The scores of the other non-overlapped items were predicted
by Equation (1). However, in the cases of all the other
methods, all the preferences were estimated irrespective of
whether or not the items were in the XB

i , because ranks
depend on the item set to sort. The numbers of clusters k
have to be fixed to apply the methods, CLS and HCR, that
use the k-o’means algorithms. Since we had not developed
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Table 1: Means and s.d. of ρ (|XB |=10, |D|=1025)
SCR RCR CLS HCR

mean 0.362 0.432 0.389 0.442
s.d. 0.3075 0.3034 0.3443 0.3095

0.1

0.2

0.3

0.4

2 3 5 7 10

r
h
o

sizes of item sets

SCR
RCR
CLS
HCR

Figure 2: Changes of criteria according to the sizes
of the response item sets (|XB |)

a method to determine these numbers, the numbers were
changed from 2 to 10, and the best result was selected.

We applied all the methods to the data set in which the
size of the data set (|D|) is 1025 and the sizes of the response
item sets (|XB |) is 10. The means and standard deviations
of ρ are shown in Table 1. Surprisingly, in all criteria, the
traditional method was worse than any of our methods. We
think that this result is due to the undesirable properties
of SD methods for CF. Below, we show the ratios of each
rating score selected by users:

[1] 0.082 [2] 0.095 [3] 0.226 [4] 0.224 [5] 0.372

This distribution is highly skewed, and users gave ratings
within a narrow range of the scale. Therefore, we believe
it is problematic to treat these ratings as values of interval
scales by introducing the assumptions in Section 1.1. Note
that it might appear to be effective to normalize by using
the minimum and the maximum ratings of each user. By im-
posing this normalization on the SCR, the mean of ρ became
0.367. This normalized SCR appeared to have no significant
advantage over the original SCR, and was found to be signif-
icantly inferior to the RCR.

Figure 2 shows the changes of the means of criteria accord-
ing to the sizes of the response item sets (|XB |), when the
sizes of the data sets (|D|) are fixed to 1025. When compar-
ing the SCR method and the other order-based methods, the
larger the |XB | becomes, the more the order-based meth-
ods overcome the SCR. Among the order-based methods, the
CLS method is rather characteristic. This method performed
even if the |XB | is small, but is inferior to the other meth-
ods when the |XB | is large. We think this is due to the
fact that while the other methods are designed to purely
predict the personal preferences of an active user, the CLS

method is designed to predict the preferences of the group
to which the active user belongs. Therefore, if less personal
information is supplied, the CLS method can make a better

0.1

0.2

0.3

0.4

300 500 1025

r
h
o

sizes of data sets

SCR
RCR
CLS
HCR

Figure 3: Changes of criteria according to the sizes
of the data sets (|D|)

Table 2: t-values of ρ between the SCR and each of
the other methods

(a) sizes of item sets (|XB |)
|XB| 10 7 5 3 2

RCR ⊕ 7.390 	 2.306 −1.275 
−2.019 
−1.772
CLS 	 2.031 ⊕ 4.803 ⊕ 5.675 ⊕ 3.572 ⊕ 8.358
HCR ⊕ 7.865 	 2.017 ⊕ 3.024 0.724 ×−2.560

(b) sizes of data sets (|D|)
|D| 1025 500 300

RCR ⊕ 7.390 ⊕ 3.234 1.280
CLS 	 2.031 0.006 0.404
HCR ⊕ 7.865 	 1.982 0.329

recommendation based on rather generalized preferences.
Figure 3 shows the changes of the means of criteria accord-

ing to the sizes of the data sets (|D|), when the |XB | are
fixed to 10. Again, the order-based method achieves superi-
ority over the SCR method if more information is available.

To stringently examine the difference between the SCR

method and the other methods, we applied a paired t-test
(Table 2). The positive t-values indicate that order-based
methods are superior. The ⊕ and 	 (× and 
) indicate
that the order-based methods are superior (inferior), and
that the difference is statistically significant at the signif-
icance level of 1% and 5%, respectively. We first discuss
results in Table 2(a). As described above, except for the
CLS method, the order-based methods are superior to the
SCR method, if the |XB | is large. However, the SCR is su-
perior when the |XB | = 2 or 3. Overall, if the system is
designed to request to sort 7 or more items, the order-based
method surpasses the traditional methods. In the case of
Table 2(b), the larger the |D| grows, the more superior the
order-based methods, except for the CLS, become.

To test the efficiency of hybridization in Section 3.3, a hy-
brid method and its source method were compared. Table 3
shows the t-values between the ρ of the hybrid method HCR

and of its source method, RCR and CLS. The positive t-values
indicate the superiority of the hybrid methods. When com-
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Table 3: Comparison with hybrid methods and their
source methods
|XB| 10 7 5 3 2

RCR 1.464 −0.301 ⊕ 4.422 ⊕ 2.933 
−1.767
CLS ⊕ 5.112 ×−3.627 ×−3.303 ×−3.295 ×−9.207

|D| 1025 500 300

RCR 1.464 −1.446 −1.316
CLS ⊕ 5.112 	 1.896 −0.175

Table 4: t-values between the ρ with and without
default voting (|D| = 1025)

|XB| 10 7 5 3 2

t-val ⊕ 2.681 −1.053× −9.412×−31.520× −8.891
# 1.768 0.868 0.445 0.161 0.072

paring with the RCR, there were no clear characteristics ac-
cording to the changes of the |D| or the |XB |. However, none
of the methods are worse than the RCR if the |XB | is greater
than 3. By clustering the user database in advance, it is
possible to save the number of the sample users to which
similarities had to be calculated. Since this result shows
that the performance was not depressed by using cluster-
ing, it is possible to save time required for recommendation
to be made by using hybridization. When comparing with
CLS, by hybridization, the characteristics of the CLS method
seem to have been lost. Therefore, similar to other memory-
based methods, the hybrid methods are superior if the |XB |
is large.

We compared the RCR methods with and without default
voting in Section 3.1.2. The results of the comparison are
shown in Table 4. The positive t-values indicate the supe-
riority of the method with default voting. The row labeled
“#” shows the mean numbers of items shared between two
preference orders, Oa and Oi. As the sizes of item sets de-
crease, the number of shared items also decrease. We had
expected default voting to be effective when the number
of shared items was small, but default voting depressed the
performance in such cases, i.e., |XB | ≤ 5. This phenomenon
was also observed if |D| is 500 or 300. We currently are not
able to explain these phenomena, but one possible hypoth-
esis is that default ranking described in Section 3.1.2 does
not work as neutral evaluation.

5. CONCLUSIONS
We advocate the new nantonac CF, by using which items

are recommended based on the order responses. We showed
that the prediction performance of nantonac CF was clearly
superior to those of the traditional method.

The current framework cannot handle a large universal
item set X∗, since it is difficult for users to sort items if
|Xi| is larger than about 10. Thus, to collect a more user
preference data, we will develop a method that allows each
user to bring multiple responses in terms of distinct item
sets.
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