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Abstract

Filling-in techniques are important, since missing values
frequently appear in real data. Such techniques have been
established for categorical or numerical values. Though
lists of ordered objects are widely used as representational
forms (e.g., Web search results, best-seller lists), filling-
in techniques for orders have received little attention. We
therefore propose a simple but effective technique to fill-in
missing objects in orders. We built this technique into our
collaborative filtering system.

1 Introduction

We developed a technique to fill-in missing objects in or-
ders, and built this technique into our collaborative filtering
system based on order responses.

An order is a sorted sequence of objects, in which the
only meaningful determination is which object precedes or
succeeds the others. Such orders are widely used as rep-
resentational forms. For example, Web search engines re-
turn page lists sorted according to their relevance to queries.
Further, best-seller lists, which are item-sequences sorted
according to the volume of sales, are used on many E-
commerce sites. In spite of their importance, the methods
of processing orders have received little attention. Filling-in
missing objects in orders is one such processing task. This
task is important, since missing values are frequently ob-
served in real data. Specifically, given a set of sample or-
ders, we developed a method of determining the rank of an
object that doesn’t appear in one order among the samples,
based on the summaries of samples. This is an analogy for
filling-in missing numerical values by means of samples.

We were motivated to develop our filling-in technique
to perform better recommendation in collaborative filtering
(CF for short). CF is a framework for recommending items
based on the other users’ preference patterns [2, 8]. Al-
most all CF methods adopt the Semantic Differential (SD)
method [7] to measure users’ preferences. In this method,

the users expose their preference by using, for example, a
five-point-scale on which 1 and 5 indicate don’t prefer and
prefer, respectively. One alternative is a ranking method.
Users’ preference patterns are obtained in the form of re-
sponse orders, which are lists of objects sorted according to
the degrees of the users’ preferences. We previously called
a CF framework incorporating this ranking method, Nan-
tonac Collaborative Filtering1 [4]; using it, more appropri-
ate recommendations could be performed. However, it was
not as advantageous if the length of response orders was
short, because it becomes difficult to evaluate similarities
between users’ preferences. Such short responses can be
easily collected using Joachims’ procedure [3]. We there-
fore wanted to improve recommendations in such a condi-
tion by introducing a filling-in technique.

We describe filling-in methods for orders in Section 2
and a nantonac CF task in Section 3. Section 4 and 5 show
our experimental results and our conclusions, respectively.

2 Filling-in Missing Objects in Orders

We first describe our basic notations. xj denotes an ob-
ject, entity, or substance to be sorted. The universal object
set, X∗, consists of all possible objects. The order is de-
noted by O=x1�x2� · · ·�x3. The meaning of the order,
x1�x2, is “x1 precedes x2.” The object set Xi is com-
posed of all the objects in the order Oi; thus |Xi| is equal
to the length of the order Oi. An order of all objects, i.e.,
Oi s.t. Xi = X∗, is called a complete order; otherwise, it
is an incomplete order. The rank, r(Oi, xj), is the cardinal
number that indicates the position of the object xj in the or-
der Oi. For example, r(Oi, x2), Oi=x1�x3�x2 is 3. For
two orders, O1 and O2, consider an object pair xa and xb,
such that xa, xb∈X1∩X2, xa �=xb. We say that the orders
O1 and O2 are concordant w.r.t. xa and xb, if two objects
are placed in the same order, i.e.,

(r(O1, xa) − r(O1, xb))(r(O2, xa) − r(O2, xb)) ≥ 0;
1The word nantonac originates from Japanese, nantonaku, which

means “unable to explain specifically, but I think such and such is the case.”
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otherwise, they are discordant. O1 and O2 are concordant
if O1 and O2 are concordant w.r.t. all object pairs such that
xa, xb∈X1∩X2, xa �=xb. The distance, d(Oa, Ob), is de-
fined between two orders consisting of the same objects,
that is, Xa=Xb(≡X). Spearman’s distance dS(Oa, Ob)
[5] is a typical dissimilarity; that is defined as the sum of
the squared differences between ranks. We adopted Spear-
man’s distance, because its statistical properties have been
well studied and its computational complexity is relatively
small. By normalizing the distance range to be [−1, 1], the
Spearman’s rank correlation ρ is defined as

ρ = 1 − 6 × dS/(|X|3 − |X|). (1)

We then describe the task of filling-in missing objects.
To calculate the distance between two orders, we use

Oa = x1�x3�x6 and Ob = x5�x3�x2�x6. (2)

Distance is defined between two orders consisting of the
same objects, but Xa and Xb differ; that is to say, both or-
ders include missing objects. The missing objects for Oa

are X̃a = {x|x/∈Oa ∧ x∈Xb} = {x2, x5}, and those for
Ob are {x1}. Hence, it is not possible to directly calculate
the distance. One way to overcome this difficulty is to ig-
nore the missing objects and to calculate the distance over
common objects, i.e., Xa ∩ Xb. For example, by ignoring
missing objects, both Oa and Ob are converted into x3�x6;
accordingly, the Spearman’s distance dS = 0. But since
useful information might be contained in these ignored ob-
jects, ignoring them would lessen the precision or the con-
fidence in the calculation of distances. Moreover, if Xa ∩
Xb = ∅, the distance cannot be obtained. If samples of
orders are available, the ranks of such missing objects can
be filled-in based on the summary statistics of the samples.
Such techniques would be highly beneficial to the derivation
of more appropriate distances. Note that, in this paper, we
assume that objects are uniformly missing. For example,
top-3-orders do not satisfy this assumption, because only
the top three objects are observed and objects at the bottom
portions of the order are always missing.

2.1 Traditional Filling-in Methods for Orders

In literature on psychological statistics, these missing
values are commonly processed by considering a set of or-
ders instead of a single order. We describe the notion of an
Incomplete Order Set (IOS)2 [5], which is defined as a set
of orders that are concordant with the given incomplete or-
der. Formally, let O be the order consisting of the object set
X , and X̃ be the set of missing objects. An IOS is defined
as

ios(O, X̃) = {O′
i|O′

i is concordant with O, X ′
i = X ∪ X̃}.

2In the cited book, this notion is referred to by the term incomplete
ranking, but we have adopted IOS to insist that this is a set of orders.

This idea is not fit for large-scale data sets because the size
of the set is |X ′|!/|X|!, which grows exponentially in accor-
dance with |X ′|. Furthermore, there are some difficulties in
defining the distances between the two sets of orders. One
possible definition is to adopt the arithmetic mean of the
distances between orders in each of the two sets. However,
this is not distance because d(iosa, iosa) may not be 0.

To avoid the above difficulties in IOS, we proposed the
idea of default rank [4]. The idea is to rank missing objects
into the middle of the filled-in orders, since such ranks can
be considered as being neutral. However, default ranks were
not found to be effective. We had thought that the middle
ranks in orders would represent neutral values, but this was
not the case. For example, suppose that there is an object
ranked at the lowest in almost all the sample orders. If this
object was ranked at the middle, the filled-in order would
indicate that the object is ranked relatively high.

2.2 A Default Order

We propose a new idea, default orders. In the case of
numerical or nominal variables, missing values can be re-
placed with the summary statistics of samples, for example,
the means or the modes. By analogy, we try to fill the ranks
of missing objects by using the centers of orders in sample
orders, S. The central order ŌS [5] is defined as

ŌS = arg minO

∑
Oi∈S d(Oi, O).

Note that ŌS is composed of objects X̄S = ∪Oi∈SXi. Ex-
cept for a few special cases, deriving the strict central or-
ders is not tractable. Hence, we employ the Thurstone’s
paired comparison method, which is based on the model
of the Thurstone’s law of comparative judgment [9]. This
model sorts objects, xj , according to their utilities, which
follow the normal distribution N(µj , σ). By applying the
least square method to this model [6], the µ′

j (a linear trans-
formation of the µj) is derived as

µ′
j = 1

|X̄|
∑

x∈X̄S
Φ−1

(
Pr[xj�x]

)
, (3)

where Φ(·) is the normal distribution function. The prob-
ability that the object xj precedes x, Pr[xj�x], can be es-
timated by simply counting the ordered pairs appearing in
the sample set. We approximate the central order by sorting
objects according to the corresponding µ′

j .
A default order is an order that is concordant with a cen-

tral order and is composed of missing objects. For example,
supposing the orders in Equation (2) are given, and let the
central order of samples be x1�x5�x2�x3�x4�x6. The
missing objects for Oa and for Ob are {x2, x5} and {x1},
respectively. Accordingly, the default order for Oa is Õa =
x5�x2. Similarly, that for Ob is Õb = x1. We propose
to fill-in the ranks of missing objects by using these default
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orders. For this purpose, the observed order and its default
order have to be merged. By definition, no objects are com-
monly included in both orders; thus, the traditional merging
methods for orders cannot be applied. We hence propose a
new merging method based on order statistics.

Consider the case that the observed order O and its de-
fault order Õ are merged into the filled order O′. These
three orders respectively consist of object sets, X , X̃ , and
X ′. By definition, X ′ = X̃ ∪ X and X ∩ X̃ = ∅. Instead
of directly modeling this merging process, we consider the
division process. Because we assumed that objects are uni-
formly missing, suppose that |O| of objects are uniformly
sampled from objects in the X ′ without replacement. These
are then sorted so as to be concordant with the O′, so that
O is obtained. In this case, for the i-th object xi:O in O, the
expectation of ranks in O′ becomes

E[r(O′, xi:O)] = i × |O′| + 1
|O| + 1

,

according to [1]. Similarly, for the j-th object in Õ,
the expectation is j(|O′| + 1)/(|Õ| + 1). We assigned
these expectations of rank to the objects in X and X̃;
then O′ is formed by sorting according these expecta-
tions. In the example of Equation (2), Oa=x1�x3�x6

and its default order Õa = x5�x2 are merged. To
the second object x3 in Oa, the expected rank 2 ×
(5+1)/(3+1) = 3 is assigned. These expectations are as-
signed to all the remaining objects in a similar way. Con-
sequently, by sorting objects according to these expecta-
tions, we obtain the order O′

a=x1�x5�x3�x2�x6. Simi-
larly, O′

b=x5�x3�x1�x2�x6. This filling-in technique is
very simple; thus, its computational complexity is small,
O(max(|X ′|, |X̃| log |X̃|)), if the central order is calcu-
lated in advance. Hence this filling-in method can be ap-
plied to large-scale data.

3 Nantonac CF with Filling-in Objects

We built the above filling-in technique based on default
orders into our nantonac CF method.

We first describe a nantonac collaborative filtering task
[4]. The aim of a CF task is to predict the preferences of a
particular user (an active user) based on the preference data
collected on other users (a user DB). The system shows a set
of objects, Xi, to the user i, and the user sorts these objects
according to his/her preferences. The sorted sequences are
denoted by Oi=x1�x2� · · ·�x|Xi|. The user DB, DS =
{O1, . . . , O|DS |}, is a set of all Oi. Sample users are people
who provided orders in the DB. Let Oa be the order sorted
by the active user, and the order is composed of objects in
Xa. Given Oa and DS , the goal of a nantonac CF task is
to estimate which of the objects are preferred by the active
user.

A simple correlation method (SCR) [4] is a basic method
for performing a nantonac CF task. In this method, objects
are recommended to active users through almost the same
process as that used in the GroupLens [8]. Rating scores
are simply substituted by ranks r(Oi, xj), which is the rank
of object j in the sample order of the user i. The system
estimates the active user’s preferences for the object j by
the function:

r̂aj =
�

i∈Ij
Rai

(
r(Oi,xj)−r̄i

)
�

i∈Ij
|Rai| , (4)

where r̄i denotes the mean ranks over Xai=Xa∩Xi. Ij is
a set of indices of sample users who evaluated the object j;
i.e., {i|Oi∈DS s.t. xj∈Xi}. Rai is a Pearson correlation
between the ranks of the active user and the user i concern-
ing objects in Xai. The objects are sorted in ascending order
of estimated preferences, and highly ranked objects are rec-
ommended. Note that the objects missing in the other order
are ignored, but the ranks are not renumbered. For exam-
ple, for Oa=x1�x2�x3 and Oi=x3�x1, the object x2 in
Oa is missing in Oi, so x2 is ignored. However, the rank of
x3 remains r(Oa, x3)=3, not 2. Hence, this correlation is
different from Spearman’s ρ.

In accordance with the decrease of |Xi| relative to |X∗|,
the frequency of the event Xa∩Xi=∅ increases. Because
Rai is always 0 in such cases, the similarities between users
can no longer be precisely measured, and an inappropri-
ate recommendation will be made. Improving recommen-
dations for short response orders, especially those with a
length of two, is an important objective. One of the obsta-
cles to performing CF is that users often take the trouble
of representing their preferences. To overcome this obsta-
cle, Joachims proposed a method for collecting preference
orders of length two [3].

In the case of CF adopting the SD method, Breese et
al. [2] proposed to fill-in missing scores and to calculate the
correlation between users’ responses over Xa∪Xi, not Xa∩
Xi. We introduce this idea into the nantonac CF method.
The procedures are the same as the original SCR except for
filling-in missing objects of Oa and Oi. The central order
ŌS over the user DB is derived in advance. Before calcu-
lating the correlation Rai, missing objects in the response
orders are filled-in by using ŌS as the default order. The
Spearman’s rank correlations between filled orders are used
as Rai. Note that filled orders are used only for calculat-
ing Rai. The r̂aj of Equation (4) is derived from the Rai

between filled orders and the original rank r(Oi, xj).

4 Experiments

To test the efficiency of using default orders, the above
CF methods were applied to preference data in sushi. Data
collection and experimental procedures were the same as

Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04) 
0-7695-2142-8/04 $ 20.00 IEEE 



 0.1

 0.2

 0.3

 0.4

 0.5

 10 7 5 3 2

SDO
SCR
BAS

ρ

|XB|
Figure 1. Changes of ρ according to |XB |

 0.1

 0.2

 0.3

 0.4

 0.5

 5000 3000 1000 500 300 100

SDO
SCR
BAS

ρ

|D|
Figure 2. Changes of ρ according to |D|

those of [4], except that the data size was expanded to 5000.
The quality of the recommendation was measured by means
of the Spearman’s ρ (Equation (1)) between the estimated
and the true preference order. Note that a larger ρ indicates
a better estimation.

We compared the nantonac CF methods using default or-
ders (SDO) with two baselines. One was the original sim-
ple correlation method (SCR) in [4]. The other was a non-
personalized recommendation (BAS); for all active users,
the objects were sorted so as to be concordant with the cen-
tral orders of the user DB. That is to say, the central orders
were treated as a best-seller list, and popular objects were
recommended.

Figure 1 shows the changes according to the lengths of
the response orders |XB | when fixing |D|=5000 (the size
of data sets). The SDO method was clearly superior to
the SCR, and the differences were statistically significant,
if |XB | ≤ 7. The shorter the response orders were, the
more inappropriately the similarities between users were
evaluated in the case of the SCR. Therefore, the SDO was
remarkably effective for the shorter orders relative to the
SCR. Figure 2 shows the changes according to the sizes of
the data sets |D| when fixing |XB |=10. The SDO was su-
perior to the SCR if |D| ≤ 500, and the differences were

significant if |D|=300, 500. If sample sizes decrease, the
number of sample users that rank the objects commonly
ranked by the active user ranked decrease. The SCR there-
fore becomes ineffective. However, since such sample users
disappear, the SDO could make better recommendation.

We then observed results for the other baseline, the BAS
method. If all users had a shared preference, the cen-
tral order itself would have provided better recommenda-
tions. However, this non-personalized method was appar-
ently worse than the SDO method. This indicates that the
advantage of the SDO was not due to the specific char-
acteristics of the users’ sharing common preferences, but
arose from the ability of the SDO method to provide well-
personalized recommendations.

5 Conclusions

In this paper, we have proposed the notion of default or-
ders to fill-in missing objects in orders. The performance of
nantonac CF was improved by using default orders.
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