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Summary

Recommender systems use collaborative filtering to recommend objects by summarizing the preference
patterns of people who have similar patterns to the target user. Traditionally, these preference patterns
are represented by rating scores. We developed recommendation methods using order responses instead
of rating scores, and showed the advantages of using orders. However, there was a problem with this
framework, in that the number of objects per user is limited, because it is generally difficult for users to
sort tens or hundreds of items at the same time. To overcome this limitation, we extended this framework
to allow multiple orders to be collected from each user.

1. Introduction

A recommender system suggests the objects that
users are expected to prefer [Ben Schafer 01]. Collab-
orative filtering (CF) is an algorithm that implements
this recommender system by automating the word-of-
mouth paradigm. To carry out this CF, users’ pref-
erence patterns must be captured. Almost all of the
CF techniques adopt the Semantic Differential (SD)
method [Osgood 57], in which users’ preference pat-
terns are obtained by using a scale on which extremes
are represented by antonymous words. One example
is a five-point-scale on which the numbers “1” and
“5” indicate “don’t prefer” and “prefer,” respectively.
To treat the acquired rating scores as interval values,
unsafe assumptions must be introduced, as shown in
Section 1・1.

We therefore advocate a method called Nantonac

Collaborative Filtering

∗1 [Kamishima 03], which
is a CF framework adopting a ranking method in
which users’ preference patterns are represented by
orders. An order is an object sequence which is
sorted according to the degree of users’ preferences.

∗1 The word “nantonac” originates from a Japanese word,
“nantonaku,” which means “just somehow.” For example,
in Japanese, if I say “I nantonaku understand something,”
I am saying that I cannot specifically explain why I under-
stand it, but that I somehow do.

We showed that the precision of recommendation could
be improved by introducing a ranking method. In this
paper, we extend this nantonac CF framework so that
it can deal with multiple response orders per user.

We describe an SD-based method and our original
nantonac CF method in Chapter 2. To demonstrate
the advantages of adopting a ranking method, we per-
formed preliminary experiments, which are described
in Chapter 3. In Chapter 4 and Chapter 5, we present
our extended nantonac CF methods and experimen-
tal results, respectively. Chapter 6 summarizes our
conclusions.

1・1 Related work and Motivation

Collaborative filtering is generally performed in three
steps: (1) obtaining users’ preference data, (2) pre-
dicting users’ preference patterns, and (3) recommend-
ing items to users. In almost all research on CF, at-
tempts have been made to improve the prediction ac-
curacy or computational efficiency in step (2) [Breese
98, Herlocker 99]. There have also been several stud-
ies on the problems in step (3). Herlocker et al. [Her-
locker 00] pointed out that explaining the reason for
making recommendations increases users’ confidence
in the CF system. Ziegler et al. [Ziegler 05] proposed
a technique of ”topic diversification” to increase the
serendipity of recommendations.
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Fig. 1 Mappings between the degree of preference and observations

The data collection step (1) should be examined to-
gether with the other steps, but this important issue
has been almost completely ignored. Users’ prefer-
ence data are collected implicitly or explicitly [Ben
Schafer 01]. In the case of implicit collection, the de-
grees of preference are expected to be based on the
users’ activity, such as browsing time or purchasing
actions. Another way to collect preference data is
to explicitly ask users for this information. In this
case, to our knowledge, a semantic differential (SD)
method [Osgood 57] has been adopted in all CF sys-
tems. However, this SD method has the following de-
fects. In Figure 1(a), we intuitively show the process
by which ratings are captured using the SD method.
The degrees of preference and observed rating scores
are shown in the upper and lower panels of the fig-
ure, respectively. We here discuss the mappings from
degrees to observation. For example, if the degree of
preference for the object X is in the interval corre-
sponding to the score 2, the user A will respond with
a rating score of 2. When measuring a physical quan-
tity like length or weight, the mapping can be defined
based on an objective and invariant criterion such as
the speed of light or the kilogram prototype. How-
ever, it is not possible to quantitatively measure the
degrees of preference, impression, or sensation, and
thus each user of necessity uses his/her own mapping
based on a subjective criterion. Therefore, the map-
pings become different between users A and B, and
thus the observed ratings are not compatible. Accord-
ingly, to overcome the above incompatibility of rat-
ing scales, two assumptions are generally introduced
[Nakamori 00]: (1) the total lengths of all the scales
are equal, and (2) all intervals within the same scale
are equal. In this case, a change in the mappings is
forced, and thus there may be a deviation between the
true degrees of preference and the degrees of prefer-
ence induced from the observations. For example, in

Figure 1(b), the degrees of preference for the objects
X, Y, and Z deviate to X’, Y’, and Z’, respectively.

To avoid this problem, we advocated Nantonac

Collaborative Filtering [Kamishima 03], in which
the degree of users’ preference is measured by using
a ranking method. In this ranking method, a user re-
sponds by ordering objects according to his/her pref-
erence. Because the degrees of preference are rela-
tively measured, as shown in Figure 1(c), it is not
necessary to make the above unsafe assumptions in
order to render the obtained observations compati-
ble.

One might think that the outcomes of the ranking
method are equivalent to orders to which rating scores
are converted: For example, in Figure 1(a), the user
A’s ratings for the objects X and Y are 2 and 3, re-
spectively. The order Y � X can be obtained by con-
verting these ratings. However, such converted orders
are different from the ones obtained by the ranking
method. As pointed out in [Luaces 04], a trained ex-
pert, e.g., a wine taster, can maintain a consistent
mapping throughout a given session, and users’ map-
pings generally change for each response. In the rank-
ing method, this is not problematic, because objects
are sorted simultaneously.

However, this ranking method has a defect, in that
the length of order responses are limited, because it
is impractical for users to sort tens or hundreds of ob-
jects simultaneously. With the previous nantonac CF
framework, the number of responses was limited to
one per user, and thus the total amount of preference
data obtained was severely limited. To overcome this
problem, we describe how we extended this nantonac
CF framework so that multiple orders could be col-
lected from each user. We propose several methods to
deal with these multiple order responses and examine
the performance of these methods.
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2. Collaborative Filtering

We will now describe methods for SD-based CF and
nantonac CF.

2・1 SD-based Collaborative Filtering

We will first describe the collaborative filtering meth-
od developed as part of the GroupLens project [Resnick
94], which adopts a SD method to measure users’ pref-
erence. Collaborative filtering is a task to predict the
preferences of a particular user (an active user) based
on the preference data collected on other users (a user
database). Formally, the task is defined as follows:
Let X∗ be a set of all objects {x

1

, . . . ,xL∗}, where L∗

is the total number of objects. Let Y ∗ = {y
1

, . . . , yM∗}
be a set of all users, where M∗ is the total number
of users. sij denotes the rating score given by the
user yi ∈ Y ∗ to the object xj ∈X∗. The score repre-
sents the preference of the user, and takes one of a
fixed finite set, for example, {1,2,3,4,5}. Note that
the subscript j of sij doesn’t means that “The j-th
object is rated by user yi,” but that “The object is
uniquely indexed by j in X∗.” Xi denotes a set of
objects the user yi rated, and Li is defined as |Xi|.
Si = {sij |xj ∈Xi} denotes a set of rating scores as-
signed to the objects xj ∈Xi by the user yi. The
user database, DS = {Si|yi ∈ YS}, consists of score
sets rated by the user in the user set YS ⊂ Y ∗. Users
in YS are called sample users. ya ∈ Y ∗\YS is an ac-
tive user for whom the system will make recommen-
dations. Let Sa be the set of scores rated by an active
user, and Xa be the set of objects that an active user
has already rated. Given the Sa and the DS , the task
of collaborative filtering is estimating the objects that
the active user is expected to rate high. Such objects
are then recommended to the active user.

The GroupLens’ estimation method works as fol-
lows. First, the similarity between the active user and
the sample user yi is measured by the correlation:

Rai=

P
xj∈Xa∩i

°
saj − s̄a

¢°
sij − s̄i

¢
s X

xj∈Xa∩i

°
saj − s̄a

¢
2

s X

xj∈Xa∩i

°
sij − s̄i

¢
2

. (1)

Xa∩i = Xa ∩Xi is a set of objects that are rated by
both an active user ya and a sample user yi. s̄i is
the mean score over the objects in Xi. The expected
score ŝaj of the object xj for the active user is

ŝaj = s̃a +

P
yi∈Yj

Rai

°
sij − s̃i

¢
P

yi∈Yj
|Rai|

. (2)

s̄i is slightly different from s̄i. This s̄i is the mean
score not over Xa∩i, but over Xi. Yj is a set of users
who rated the object xj , i.e., {yi|sij ∈ Si,Si ∈DS}.
The system recommends the objects for which the ex-
pected score ŝaj is high. Note that in paper [Resnick
94] it was stated that, “All the summations and av-
erages in the formula are computed only over those
articles that Ken and Lee both rated.” However, in
equation (2), we use s̃i instead of s̄i, because we ob-
tained a slightly better experimental result.

2・2 Nantonac Collaborative Filtering

We here show Nantonac Collaborative Filter-

ing [Kamishima 03], which is the CF framework in-
corporating the ranking method. To show the effec-
tiveness of adopting a ranking method, we applied the
same method as with the GroupLens’, except for the
users’ response orders. Formally, the nantonac CF is
stated as follows.

In the case of nantonac, the system shows a set of
objects, Xi, to the user yi, and the user sorts them
according to the degree of his/her preference. The
sorted order is denoted by Oi = xa� · · ·�xj� · · ·�xb.
The order x

1

�x
2

represents “x
1

is preferred to x
2

.”
The length of order Li is equivalent to the size of
Xi. The subscript j of x means that “The object
is uniquely indexed by j in X∗.” Rank, r(Oi,xj),
or simply rij is the cardinal number that indicates
the position of the object xj in the order Oi. The
user DB is a set of orders sorted by all the sample
users, DO = {Oi|yi ∈ YS}. Let Xa be a set of objects
sorted by the active user, and Oa be his/her order
response. Given the Oa and DO, the task of nantonac
CF is to estimate the preference pattern of the active
user. We call this original problem the Single-Single

Nantonac CF (SS-NCF) to differentiate it from
the extended versions in Chapter 4. This is because
both the active user and sample users provide a single
order response per user.

Applying the GroupLens’ method to this nantonac
CF problem is very simple: the rating scores sij in
equation (1) are replaced with ranks rij :

Rai=

P
xj∈Xa∩i

°
raj − r̄a

¢°
rij − r̄i

¢
s X

xj∈Xa∩i

°
raj − r̄a

¢
2

s X

xj∈Xa∩i

°
rij − r̄i

¢
2

, (3)

and equation (2) becomes

r̂aj = r̃a +

P
yi∈Yj

Rai(rij − r̃i)P
yi∈Yj

|Rai|
, (4)
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where r̄i and r̃i are the mean rank over the objects in
Xa∩i and Xi, respectively. A set of candidate objects
are sorted in ascending order of the corresponding r̂aj ,
and the objects ranked highly are recommended.

It is worth mentioning why the rating scores can be
replaced with the ranks in response orders. According
to [Arnold 92], assuming that the objects in X∗ are
missed uniformly at random from a hidden order O∗

h,
incomplete orders Oi are observed. The conditional
expectation of ranks of the object xj ∈Xi in the order
O∗

h given Oi is

E[r∗j |Oi] = r(Oi,xj)
L∗ + 1
Li + 1

, (5)

where r∗j ≡ r(O∗
h,xj) and L∗ = |X∗| and Li = |Xi|.

Because L∗ is constant, if Li is constant for all yi ∈
Y ∗, E[r∗j |Oi] is proportional to r(Oi,xj) ≡ rij . Two
similarities between users, equations (1) and (3), are
almost the same. However, the former denotes Pear-
son’s correlation between two users’ ratings scores,
while the latter approximates Spearman’s rank cor-
relation (see equation (6)) between hidden complete
response orders of two users. Furthermore, equa-
tion (2) represents the estimated rating score, while
equation (4) can be considered the estimated rank in
O∗

i up to scaling and shifting. Note that if Li is not
constant, rij in equations (3) and (4) should be re-
placed with rij/(Li + 1).

We here describe some definitions related to or-
ders. The distance, d(Oa,Ob), is defined between
two orders consisting of the same objects, that is,
X≡Xa=Xb. One such distance is Spearman’s dis-

tance dS(Oa,Ob) [Marden 95], which is defined as
the sum of the squared differences between ranks;
dS(Oa,Ob) =

P
xj∈X(raj − rbj)2. By normalizing the

distance, the Spearman’s rank correlation is defined
as

ρ = 1− 6dS/(L3−L), where L = |X|. (6)

2・3 Modified Mean Expected Rank

Before showing an improved version of the above
basic CF methods, we will give a definition of a cen-
tral order and its derivation method. This method is
also used for dealing with multiple response orders in
Chapter 4.

Given a set of orders T = {Oi|i = 1, . . . , |T |}, a cen-
tral order is the order that consists of objects XT =
X(O

1

)∪ · · ·∪X(O|T |), and the sum of distances from
the order to the constituents in T is the minimum.

Formally,

ŌT = arg min
O s.t. X(O)=XT

X

O�∈T

d(O�,O), (7)

where d(O�,O) is the distance between orders, e.g.,
Spearman’s distance, over the objects in X(O�)∩X(O).
To derive central orders efficiently, we advocate a
Modified Mean Expected Rank (MMER) method.
Let T (xj) be the set of orders in T such that the ob-
ject xj is included, i.e., T (xj) = {Oi : xj ∈X(Oi),Oi ∈
T}. Mean expected rank, MER(xj), is defined as the
mean of expected ranks (see equation (5)) of objects
xj over T (xj), i.e., (1/|T (xj)|)

P
Oi∈T (xj)

E[r∗j |Oi]. It
would be reasonable to derive a central order by sort-
ing objects xj ∈ T according to the corresponding the
MER(xj). However, information about the size of
T (xj) is not taken into account. Between two objects
xa and xb such that |T (xa)| > |T (xa)|, the value of
MER(xa) would be more reliable than that of MER(xb).
In such a case, if MER(xa)=MER(xb), which object
should be ranked higher? Because the middle position
of an order is considered providing no information, the
object xa whose |T (xa)| is larger should be ranked
farther from the middle of a central order. To imple-
ment this idea, we introduce a “default rank”, that is
the mean rank given no sample order, i.e., (L∗ + 1)/2.
MMER is defined as a mean of ranks over expected
ranks in T (xj) together with one default rank. For-
mally, the MMER(xj) is defined as

MMER(xj) =
L∗+1

|T (xj)|+ 1

µ
1
2

+
X

Oi∈T (xj)

rij

Li + 1

∂
, (8)

where E[r∗j |Oi] is equation (5). In the MMER method,
these MMER(xj) are calculated for each xj ∈X(ŌT ),
and a central order is then derived by sorting the ob-
jects in ascending order of MMER(xj). Because these
MMER can be calculated by scanning all the orders in
T , only the time O(

P
Oi∈T Li) is required. By adding

the sorting time O(|X(ŌT )| log |X(ŌT )|), a central or-
der can be derived.

2・4 Filling Missing Scores and Ranks

We describe an improved method for settling the
problems stemming from the sparseness of ratings.
As pointed out in [Breese 98], the similarities be-
tween users, equations (1) and (3), are derived based
on the objects rated by both an active user and a
sample user. However, such objects don’t exist with
high probability, since generally |Xa|, |Xi|� |X∗|. To
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Table 1 Comparison between SD-based and nantonac CF

method (A) (B) (C)

N :5000,L:10 N :500,L:10 N :5000,L:5

nantonac 0.489 0.427 0.219

SD-based 0.438 0.369 0.195

shift 0.437 0.369 0.194

z-score 0.445 0.372 0.202

min-max 0.445 0.369 0.202

rank 0.444 0.379 0.205

RC 0.437 0.370 0.194

cope with this problem, we proposed a filling tech-
nique designed for nantonac CF in [Kamishima 04].
In this technique, the objects that are not sorted by
either user are filled by a central order of DO. We
here show a slightly modified version using MMER
in Section 2・3. Simply speaking, all ranks rij are re-
placed with E[r∗j |Oi], and missing ranks are filled by
MMER(xj). When calculating equation (3), if xj is
sorted by the user yi, i.e., xj∈Si, we replace rij with
equation (5), i.e., rij

L∗
+1

Li+1

. If xj is not sorted by yi,
i.e., xj /∈Si, rij is replaced with MMER(xj). Note that
the constant L∗ is unknown, but this is canceled out
in equation (3). Also, the summations are calculated
not over Xa∩i = Xa ∩Xi, but over Xa ∪Xi. Equa-
tion (4) is calculated from these Rai and the original
rij , and the candidate objects are sorted according to
r̂ij .

3. Experiments on SS-NCF

To demonstrate the merits of adopting a ranking
method, we show the experimental results in [Kamishima
03], and additional results on the conditions where SD
scores are normalized. We then show the effectiveness
of filling missing scores or ranks.

3・1 Comparison between SD-based and Nan-

tonac CF

We used the same data set as those of [Kamishima
03], except that the data size was expanded to 5000(=N).
We extracted two object sets XA and XB , of which
the size was 10(=|Xi|), from 100(=|X∗|) possible ob-
jects. The objects in each set were sorted by 5000
users, and we then obtained two sets of orders, {OA

i }N
i=1

and {OB
i }N

i=1

, that were used for testing and training,
respectively. The object sets XB

i were also evalu-
ated by a SD-method, and the corresponding rating
score sets are denoted by {SB

i }N
i=1

. The prediction
accuracy of the CF methods was evaluated by the
following cross validation procedure: In each fold of

test, the order/score set, {OB
i }/{SB

i }, was divided
into two sets, and one set was considered to be the
user DB DO/DS

∗2. Additionally, orders/scores were
sequentially picked from the other set and treated as
an active users’ response Oa/Sa. From these DO/DS

and Oa/Sa, we estimated the preference orders ÔA
a

for the objects in XA. The estimation performance
was measured by Spearman’s ρ (Equation (6)) be-
tween the estimated order ÔA

a and the response order
OA

a ∈ {OA
i }. The larger ρ indicates the better recom-

mendation.
We show the mean ρ in Table 1. The columns (A),

(B), and (C) show the means of ρ when the data set
size, N , and the length of response orders, L, are
changed. In the first and second rows, we show the
results derived by a nantonac method in Section 2・2
and an SD-based method in Section 2・1, respectively.
In all conditions, a nantonac CF method performed
better, and the differences were statistically signifi-
cant. Hereafter, the term “significant” means that
the difference between the means of ρ is statistically
significant at the level of 1% by a paired t-test. In
addition, the larger N or L was, the more significant
the difference was. When fixing L=10, the differences
were significant if N≥300. When fixing N=5000, the
differences were significant if L≥5. As described in
Section 1・1, since we can measure preferences based
on a compatible scale by a ranking method, response
orders are collectively more informative than ratings.

We additionally show that the normalization of scores
cannot help to overcome this advantage. In [Herlocker
99], it was shown that the normalization of scores can
improve the prediction performance. Before applying
an SD-based CF algorithm, we normalized the rating
scores by the following procedures.
shift: sij was normalized to sij − s̃j , where s̃j is the
mean over Si.
z-score: After the above shift normalization, the scores
were divided by the standard deviation over Si.
min-max: sij is normalized to sij−minj{sij∈Si}

maxj{sij∈Si}−minj{sij∈Si} .
rank: After the objects in Si are sorted in ascend-
ing order of the corresponding scores, each score is
converted to the ranks in the order.
RC: As Rai, we used rank correlation instead of Pear-
son’s correlation.

In the third to seventh columns, we show the means
of ρ derived by each normalization technique. As
pointed out in [Herlocker 99], these normalizations

∗2 Because we performed 10-fold cross validation,
|DO|/|DS | became 9N/10
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Fig. 2 Comparison with filling and normalizing techniques

were effective for improving prediction accuracies. How-
ever, the nantonac CF was still superior to these SD-
based methods adopting score normalization. In ad-
dition, the differences were statistically significant.
These experimental results support our claim that the
SD scores cannot completely be normalized due to the
reasons described in Section 1・1.

3・2 Filling Missing Scores or Ranks

In this section, we applied both normalization and
filling methods. In Figure 2, we show the results
when the size of the data sets, N , and the length
of the response orders, L, were varied. The curves
labeled ORD is the result derived by a nantonac CF
method with the MMER filling technique. For SD-
based methods in which missing scores are filled by
the means over scores to the target object, i.e., {si�j |yi� ∈
Yj}. Additionally, two normalization techniques, the
min-max and rank, are applied, and the correspond-
ing results are denoted by SD-MM and SD-R. In Fig-
ure 2, we show the means of ρ derived by these three
methods. In Figure 2(a) and Figure 2(b), we show
the results when varying the size of the data sets and
length of the response orders, respectively. In Fig-

ure 2(a), ORD is significantly better than the two
SD-based methods if N≥3000. In Figure 2(b), ORD
was significantly better than SD-R over all L, and was
significantly better than SD-MM if L≥3. However,
ORD is significantly worse if L=2. Information cap-
tured by the ranking method severely lessens if L=2.
Even in such a disadvantageous case, the ORD was
better than the SD-R. In addition, the ORD exceeded
the SD-MM and SD-R in many cases. We consider
these observations to strongly show the merits of nan-
tonac CF.

4. Methods Designed for Multiple Re-

sponse Orders

We extend the nantonac CF methods in Chapter 2
so as to be able to deal with multiple response orders.

We first extended the SS-NCF (Single-Single Nan-
tonac CF) in Section 2・2 so that the active user still
returns only one order per user, but the sample users
are allowed to provide multiple responses per user.
We call this extended version the Single-Multi Nan-

tonac CF (SM-NCF). Specifically, Ki object sets,
Xik ⊆X∗,k=1, . . . ,Ki, are sequentially shown to the
user yi. Note that these object sets are generally
different each other. He/She then returns the or-
der response Oi1, . . . ,Oi,Ki for each object set. These
Ki responses make a set Qi. The user DB then be-
comes a set of orders sorted by all the sample users,
DQ = {Qi|yi ∈ YS}. In SM-NCF, the active user’s re-
sponse is a single order, Oa. Given the Oa and DQ,
the goal of the SM-NCF is to estimate the preference
pattern of the active user.

This SM-NCF task is achieved as follows. Each
order set in Qi ∈DQ is converted to its correspond-
ing central order. That is to say, objects XQi = Xi1 ∪
· · ·∪Xi,Ki are sorted in ascending order of MMER(xj)
in Section 2・3. The resultant central order is de-
noted by Ōi. These central orders are collected into
Dcenter

Q = {Ōi|yi ∈ YS}, and the SS-NCF method is
performed on this Dcenter

Q and Oa. Note that we
equally assign the midrank [Marden 95, chapter 11]
to the objects whose MMER values are equal.

We further extended this SM-NCF so that mul-
tiple order responses are allowed not only to sam-
ple users, but to an active user. This Multi-Multi

Nantonac CF (MM-NCF) is formalized as follows:
The active user sorts the objects in each object set,
Xa1

, . . . ,Xa,Ka , and returns orders Qa = {Oak}Ka
k=1

,
where Ka is the number of the active user’s responses.
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Table 2 SS-NCF vs SM-NCF for SUSHI data

Methods 2 3 5 7
SS-NCF 0.378 0.416 0.457 0.488
SM-NCF 0.519 0.529 0.535 0.527

Given the Qa and DQ = {Qi|yi ∈ YS}, the goal of the
MM-NCF is to estimate the preference pattern of the
active user.

We here describe two types of meta-methods to
carry out the MM-NCF by using the above SM-NCF
method as a subroutine. The first meta-method is
Pre-Centering. Before performing the SM-NCF,
the central order of the active user’s order set Qa

is derived. By treating this central order Ōa as a
single response order, candidate objects are sorted
by using the above SM-NCF method. The second
is the Post-Centering method. For each order re-
sponse Oak ∈ Qa, the same set of candidate objects
Xq are sorted according to the degree of preference
estimated by applying a SM-NCF method to Oak and
DQ. Consequently, we obtain a set of estimated or-
ders, Ôq1, . . . , Ôq,Ka , that consist of objects Xq. Fi-
nally, the final preference order is obtained by cal-
culating the central order of these estimated orders.
Note that the post-centering is about Ka times slower
than the pre-centering.

5. Experiments on SM-NCF and MM-

NCF

We applied the methods in Chapter 4 to the real
data set in Section 3・1. In this data set, only one
response order per user could be used for estimating
the preference patterns; thus, we could not perform
the SM-NCF or MM-NCF experiments. Therefore,
to simulate multiple order responses, each single re-
sponse was converted into multiple response orders.
For each response order Oi, sets of objects Xik were
randomly sampled without replacement. Note that
sampling with replacement was used if Li > 5. For
each sampled set Xik, the objects in the set were
sorted so as to be concordant with the original re-
sponse Oi; consequently, we got Oik. The response
order sets of user yi were formed by collecting these
orders. We used a notation such as L×K, where L

is the length of each response and K is the number
of responses per user. 10-fold cross validation was
performed.

In this section, we tested the SM-NCF method in
Chapter 4. Hereafter, we used a nantonac CF method

 0.45
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 0.55

 5000 3000 1000 500 300 100
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5x2
2x5

ρ

N

Fig. 3 Effects of divisions into multiple response orders

with a filling technique in Section 2・4. We first checked
the minimum requirement “Could the estimation pre-
cision be improved by using multiple order responses
on SUSHI data?” In Table 2, we showed the means
of ρ estimated by the methods in Chapter 4. The
1st to 4th columns contained the means estimated by
using responses whose length, Li, were 2 to 7, respec-
tively. As the active users’ responses, the original or-
ders of length La = 10 were used. The SS-NCF meth-
ods adopted single responses per sample user, while
the other SM-NCF methods adopted two responses.
Apparently, the SM-NCF methods were advantageous
to the corresponding SS-NCF methods, especially if
the lengths of the responses were short. It should be
concluded that additional information collected from
multiple responses was useful for improving the rec-
ommendation accuracy.

Next, by dividing a single response into multiple
ones, some information was lost. For example, when
Oi=x

1

�x
2

�x
3

�x
4

is divided into Oi1=x
1

�x
3

and
Oi2=x

2

�x
4

, the information “x
1

is preferred to x
2

”
was lost. Figure 3 showed variations of the mean ρ

in the size of the data sets, N . SS-NCF denotes the
result derived from the data set that consists of active
and sample response orders whose lengths are La=10
and Li=10, respectively. The curve labeled 2× 5 rep-
resents the result obtained from data whose sample
users’ response sets were composed of 5 orders with
lengths of 2. The 5× 2 curve is similarly defined. Sur-
prisingly, even if the sample orders were divided into
multiple ones, the prediction performance was hardly
degraded at all. The reason for this would be because
lost information in a some sample user’s response is
compensated for another user’s response. It would
therefore be beneficial to collect multiple responses
per sample user.

We carried out an experiment of two MM-NCF
meta-methods in Chapter 4 by using the SM-NCF
as a subroutine. The sizes of data sets N were 5000.
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As a baseline, we chose the SS-NCF result under the
condition La=10 and Li=10. Because no informa-
tion is lost by division into multiple responses, this
result would be the upper limit. In this case, the
mean ρ was 0.521. Next, we applied pre-centering and
post-centering MM-NCF methods. The lengths of the
responses La and Li were 7, and the number of re-
sponses per active/sample user was 2, i.e., Ka=2 and
Ki=2. We obtain the mean ρ’s 0.514 and 0.499 by us-
ing the pre-centering and the pre-centering methods,
respectively. Compared to these results with the up-
per baseline 0.521, the performance of the MM-NCF
methods were slightly degraded. This is because ac-
tive users’ responses were divided, and information
was lost. This result was contrasted with the results
in Figure 3, in which the prediction accuracy was
hardly degraded at all. The reason for this is because
lost information in some sample users’ responses can
be compensated for that in by other sample users’ re-
sponses, in the Figure 3 experiments. However, no
information is available to compensate for the infor-
mation lost in active users’ response, in this exper-
iment. When comparing the pre-centering and the
post-centering, the former was significantly better.
By using the pre-centering method, the length of the
active users’ responses became longer, and thus ob-
jects were more frequently contained in both the ac-
tive and sample users’ responses. Hence, the estima-
tion performance could be improved. Furthermore,
the pre-centering was computationally efficient. Con-
sequently, the following method would be suggested
for performing MM-NCF: First, for all the response
sets, Qa and Qi ∈DQ are converted to central orders
Ōa and Ōi, respectively. Then, a SS-NCF method is
applied to this converted set.

6. Conclusions

We proposed the nantonac CF framework, in which
the CF employs the ranking method. In the former
framework, because exactly one order response per
user was allowed, the total amount of preference pat-
terns that could be collected from users was limited.
Therefore, we extended this nantonac CF so that mul-
tiple responses could be collected from each user. We
developed several methods for making recommenda-
tions based on these multiple order responses and em-
pirically showed that these methods worked well. We
plan to combine this pure collaborative filtering with
content-based filtering, which is the recommendation

method using the characteristics of objects.
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