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Today I’d like to talk about a dimension reduction for supervised 
ordering
 
 .



Overview
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Order: object sequence sorted according to a particular property

prefer not prefer

squid cucumber rollfatty tuna
> >

“I prefer fatty tuna to squid” but “The degree of preference is unknown”

ex. an order sorted according to my preference in sushi

Supervised Ordering
Task to learn a function for ordering objects, from 
given a set of example orders
Dimension reduction technique specially designed 
for this task

A supervised ordering task is to learn a function for object ordering 
from given example orders.
For this task, the curse of dimensionality is serious problem like other 
learning tasks.
Therefore, we propose a dimension reduction technique specially 
designed for this task.
We begin with what is an order.
An order is an object sequence sorted according to a particular 
property.
For example, this is an order sorted according to my preference in 
sushi.
This order indicates that “I prefer a fatty tuna to squid”, but “The 
degree of preference is unknown.”



Supervised Ordering
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O1 = x1!x2!x3

O2 = x1!x5!x2

O3 = x2!x1

sample order set
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x3
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x5

attribute vector space
objects are represented by

attribute vectors

Input

Ordering
function

Ôu = x1!x5!x4!x3

x1
x3

x4

x5Xu

Supervised 
Ordering
Algorithm

unsorted object set

estimated order

attribute values are known

We first show an overview of a supervised ordering task.
Training example orders are sorted according to the degree of the 
target property to learn.
Objects in these orders are represented by attribute vectors.
From these examples, a supervised ordering algorithm learn an 
ordering function.
By applying this learned function, unordered objects can be sorted 
according to the degree of the target property.
Objects not appeared in training examples can be ordered by referring 
the attribute values.



Supervised Ordering (c.f. regression)
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Supervised Ordering: regression targeting orders

input
X1

X3

X2

regression curve
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Y1
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Y’3
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Y’3
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 Generative model of regression

input
X1

X3

X2

regression order
ordering function

X1 X3X2! !

sample

X1 X2X3! !

permutation noise
random permutation

X1 X3X2! !

 Generative model of supervised ordering

Supervised ordering can be considered as regression targeting orders.
This is a generative model of supervised ordering.
Unordered objects are given. These objects are sorted according to the 
degree of the target property.
This order is then affected by permutation noise, and finally a sample 
order is generated.
This model is very similar to that of regression, like this.



Ordered Category Absolute Information is contained
Ex: for good-fair-poor, “good” indicates absolutely good.

Order It contains purely relative information

Ordinal Regression
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regression whose dependent variables are ordered categorical

Ordered Category can take one of predefined values, and, 
additionally, these values are ordered (ex. good-fair-poor)

Difference between “orders” and “ordered categories”

1

2 Ordered Category The # of grades is finite
Ex: for good-fair-poor, the # of grades is limited to three

Order The # of grades is not limited

Supervised Ordering is more general problem than Ordinal Regression

This supervised ordering is also related to ordinal regression problem.
The dependent variable of an ordinal regression task is ordered 
categorical variable.
Ordered categorical variables can take one of predefined values, and 
additionally, these values are ordered.
There are two points of differences between “orders” and “ordered 
category.”
Ordered categorical values provide absolute information,  and the 
number of grades is finite.
Therefore, supervised ordering is more general problem than ordinal 
regression.
Now, we have defined a supervised ordering task.
Next, we will show a few example tasks suited for using orders.



Application: measuring subjective quantities
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measured by scale whose extremes are represented by antonymous words
Ex: The respondent select “prefer” if he/she prefers the item A

Semantic Differential Method (SD Method)

Ranking Method

Ex: The respondent prefers the item A most, and the item B least
Objects are sorted according to the degree of quantities to be measured

prefer not
prefer> >itemA itemC itemB

Orders are useful for measuring subjective quantities, such as, the 
degrees of preference, impression, or sensory

prefer not prefer

itemA

Orders are useful for measuring subjective quantities, such as the 
degrees of preference, impression, or sensory.
Such quantities can be measured by pointing on a scale like this.
For example, the respondent select “prefer,” if he/she prefers the item 
A. 
This is called an SD method.
One alternative is a ranking method.
Objects are sorted according to the degree of quantities to be 
measured.
In this example, the user prefer Item A most, and the item B least.
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Application: measuring subjective quantities
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measurement by SD 
method

Inducing the degree of 
preference

measurement by 
ranking method

In a ranking method, the 
degrees of preferences 
are relatively specified
No need for calibration 
of mapping scales

We are forced to assume 
a common mapping 
scale.
The degrees of 
preferences might be 
deviated

Each user uses one’s 
own mapping scale
Observed scores cannot 
be comparable among 
users

We show a merit of using a ranking method.
We ask users their degree of preference, because the true degrees in 
users’ mind cannot be observed directly.
For example, the degree of preference on the item X lies in interval 2 
of user A; Then, the user A replies rating score 2.
Therefore, in an SD method, each user uses one’s own mapping scale.
So, observed scores cannot be comparable among users.
Therefore, we are forced to assume a common mapping scale.
However, the degrees of quantities might be deviated to X to X’.
In a ranking method, the degrees of preferences are relatively 
specified.
So, no need for calibration of mapping scales.



Application: Relevance Feedbacks
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Method for Implicitly obtaining the user’s relevance 
feedback [Joachims 02]

Ranked List for the query Q

1: document A
2: document B
3: document C
4: document D
5: document E

selected
by user

Based on these feedbacks and document features, the degrees of 
relevance can be modified by using supervised ordering methods

The user scans this list from 
the top, and selected the third 
document C.

The user checked  the 
documents A and B, but these 
are not selected.

This user’s behavior implies 
relevance feedbacks: C>A and 
C>B.

Orders are useful for dealing with relevance feedbacks.
Joachms proposed a method for implicitly obtaining the relevance 
feedbacks.
Given a ranked list for the query Q, the user scans this list from the 
top, and selected the third document C.
The user checked the documents A and B, but these are not selected.
This user’s behavior implies relevance feedback: The document C is 
more relevant than the A or B.
Based on these feedbacks and document features, the degrees of 
relevance can be modified by using supervised ordering methods.
Now, we have shown usefulness of orders. Next, we will show a 
dimension reduction technique for a supervised ordering task.



Rank Correlation
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the sum of the squared 
differences between 
ranks in two orders

D > B > A > C

A > B > C > DO1

O2

Convert to ranks

A DCB
1 2 3 4

3 2 4 1
Spearman distance

Spearman distance is normalized Spearman ρ

Kendall distance
B > A > C

A > B > CO1

O2

A > B A > C B > C

B > CA > CB > A # of discordant pairs 
between two orders

Spearman ρ and Kendall τ are highly correlated

decompose into ordered pairs

Kendall distance is normalized Kendall τ

Before showing our dimension reduction method, we show some 
basics.
Rank correlations, Spearman rho and Kendall tau, are widely used to 
measure the concordance between a pair of orders.
Spearman rho is calculated based on the sum of the squared 
differences of ranks in two orders.
Kendall tau is calculated by counting the number of discordant pairs 
between two orders.
These two rank correlations are highly correlated.



low-dimensional sub-space

Dimension Reduction
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mapping data in a high-dimensional space into a lower-dimensional 
sub-space, while limiting the amount of lost information

high-dimensional space

Ex. Principal Component Analysis, Fisher Discriminant Analysis

mappng

preprocess to avoid “the curse of dimensionality”
By finding the more informative sub-space, the model with high-
generalization ability can  be learned

Dimension reduction is a technique for mapping data in a high-
dimensional space into a lower-dimensional sub-space, while limiting 
the amount of lost information.
Dimension reduction is used as preprocess to avoid “the curse of 
dimensionality.”
By finding the more informative sub-space, the model with high-
generalization ability can  be learned.



PCA Is Not Suited for Supervised Ordering

11

B

C

A

Objects in Attribute Space Target Ordering

A

C

B

＞

＞

relevance

important information 
for a supervised 

ordering task

Useful information in terms of the target ordering will be lost

PCA is designed so as to preserve the information
regarding the objects themselves

Principal component analysis is a widely used dimension reduction 
technique.
However, this PCA is not suited for solving a supervised ordering task.
PCA is designed so as to preserve the information regarding the 
objects themselves.
But, the important information for a supervised ordering task is the 
relevance between objects in attribute space and target ordering to 
learn.
Therefore, this useful information in terms of the target ordering will 
be lost.



Rank Correlation Dimension Reduction
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l-th sub-space has been already derived
original space
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x(l)
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x(l)
31

x(l)
32 x(l)

22 x(l)
12

eliminate the information expressed by the l-th sub-space
by mapping to the complementary space

Now, we will show our dimension reduction for a supervised ordering task.
In this method, vectors of basis are iteratively selected so as to preserve 
information about relevance between the attribute values and the target 
ordering.
We show one iteration process. We assume that the l-th sub-space has been 
already derived. In other words, we have l vectors of the basis, and try to find 
the next l+1-th vector.
First, we eliminate information expressed by this l-th sub-space.
To this aim, we consider the complementary space that is orthogonal to the l-th 
sub-space.
All the objects mapped to this complementary space.
After that, objects are represented by these mapped attribute vectors.
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Rank Correlation Dimension Reduction
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k-th attribute of the vector  
mapped to the l-th 

complementary space
convert to

orders

O1

O2

ON

…

sample
orders

relevance
between

attributes and
target ordering

chose the l+1-th vector so as to 
maximize these relevances

Generate the vector whose 
elements are      .

The l+1-th vector is derived by 
mapping this generated vector 
on the complementary space

R(l)
k

x(l)
1k

x(l)
3k

x(l)
2k

x(l)
1k!x(l)

3k!x(l)
2k

R(l)
k

We observe the k-th attribute of the vector mapped to the l-th 
complementary space.
For solving a supervised ordering task, the ordinal information is more 
important. So, we convert to orders by sorting according to the mapped 
attribute values.
Next, we calculate the rank correlations between this converted order and 
for each sample order. These correlations are then summed up, and we get 
Rk. We consider this Rk represents the degree of relevance between 
attribute values in the l-th complementary space and the target ordering.
Now, all that we have to do is to chose the l+1-th vector of the basis so as 
to maximize these relevances in the l-th complementary space.
To this aim, we calculate this Rk for each attribute, and generate the vector 
whose elements are Rk. The l+1-th vector of the basis is derived by 
mapping this generated vector on the l-th complementary space.
By iterating these process, we can obtain the sub-space. We call this 
method, rank correlation dimension reduction.



zero Pearson correlation       orthogonal in attribute space

Pearson and Rank Correlations
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In our RCDR case,
rank correlations are maximized...

dependent variables are real numbers
and Pearson correlations are maximized...

All vectors of a basis become 0 vectors If l is larger than 2

zero rank correlation       orthogonal in attribute space
Note: If the data points are placed at regular intervals in the l-th 

subspace, all the vectors in bases are zero after the l+1-th 
subspaces.

Here, we want to insist the difference between Pearson and rank 
correlations.
Assume that dependent variables are real numbers and Pearson 
correlation is maximized.
In this case, zero Pearson correlation implies the orthogonality in 
attribute space.
Therefore, all vectors of a basis are zero vectors, if l is larger than 2.
On the other hand, in our RCDR case, rank correlations are 
maximized.
In this case, zero rank correlation doesn’t implies orthogonality.
Therefore, vectors of a basis can be non-zero vectors, even if l is larger 
than 2.
Now, we have shown our new RCDR method. Next, we will show 
simple example and experimental results.



Simple Example (1)
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original attribute vector
each object is represented by 5 attributes
1000 objects are randomly generated
each attribute values follow normal distribution N(0,1)
correlations among attributes are designed ...

!xi = [ xi1,  xi2,  xi3,  xi4,  xi5 ] 

mutually independent

perfectly corrleated
= completely equal

We first show a simple example to demonstrate what is produced by 
our RCDR methods.
Each object is represented by 5 attributes.
1000 objects are randomly generated.
Each attribute value follows normal distribution with zero mean and 
unit variance.
Correlations among features are designed like this.
The first to fourth attributes are mutually independent. The fourth and 
fifth attributes are perfectly correlated. That is to say these two 
attributes are completely equal.
In this case, by applying a PCA technique, one of these two attributes 
will be considered redundant, and will be ignored.



Simple Example (2)
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sample orders

x1 x3
x5

x2
x6 x7
x9

x4
x10x8

object set

x2

x6

x7

x9

x4

randomly sample
5 objects

sample order

sort according to

+
permutation noise

w∗"xi

x9!x4!x7!x6!x2

4th & 5th weights are zero

these attributes are irrelevant to the target ordering 

!w* = [ 1,  1,  0.5,  0,  0 ] 

From these generated objects, sample orders are constructed.
First, we randomly sample five objects.
These objects are sorted according to the weighted sum of attribute 
values.
Then, permutation noise is added to this order. Finally, a sample order 
is obtained.
This process is repeated.
Here, we use weights of attributes like this.
Because the forth and fifth weights are zero, these attributes are 
irrelevant to the target ordering.
Therefore, these two attributes will be ignored by applying our RCDR 
method.



Simple Example (3)
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For 300 sample orders, PCA and RCDR are applied

1st 0.02 -0.74 0.54 -0.39 0.00

vectors of the basis derived by PCA

1st 0.70 0.64 0.31 -0.06 -0.06

vectors of the basis derived by RCDR

Since the 4th & 5th attributes are irrelevant to the target ordering,
these attributes are ignored by our RCDR

redundant attribute can be ignored

Irrelevant attributes to the target ordering cannot be ignored

For 300 sample orders, PCA and RCDR techniques are applied.
In the first vector of the basis derived by our RCDR, these two 
elements are nearly zero.
Since the fourth and fifth attributes are irrelevant to the target ordering, 
these attributes are ignored by our RCDR.
In the case of PCA, the fifth attribute is zero, because redundant 
attribute can be ignored by applying PCA.
However, the fourth element is not zero, because irrelevant attributes 
to the target ordering cannot be ignored.



Experimental Results
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Fig.4 NEWS(a) SMALL training set

If the # of dimensions is appropriate, the estimation concordance is no worse than 
the concordance derived by using all attributes

 “the curse of dimensionality” is alleviated
The concordance of RCDR is better than that of PCA if the # of dimensions is small

 the information required for solving supervised ordering tasks is preserved by 
our RCDR, but is not by PCA

(603 attributes)

Fig.4 NEWS(c) LARGE training set

Next, we show experimental results on real data.
News articles are sorted by users according to their significance. Based on 
word and category attributes, these orders are estimated by using 
supervised ordering techniques.
In these charts, the upper indicates the better estimation. Green lines show 
results derived by using all original 603 attributes. Red and Blue lines 
show results derived after preprocessed by our RCDR and PCA, 
respectively. The number of dimensions is varied.
If the number of dimensions is appropriate, the estimation concordance is 
no worse than the concordance derived based on all attributes.
This fact indicates that the curse of dimensionality is alleviated.
This is because the simpler and more appropriate model class can be used 
in a learning process.
The concordance of our RCDR is better than that of PCA if the number of 
attributes is small
This fact indicates that the information required for solving supervised 
ordering tasks is preserved by our RCDR, but is not by PCA



Conclusion
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Rank Correlation Dimension Reduction
To performing supervised ordering tasks, information about 
relation between target ordering and features of objects. 
Therefore, this reduction technique is specially designed 
so as to preserve this information. 

In a case of supervised ordering task, estimation 
concordance derived by using our RCDR is superior to 
that derived by general purpose PCA.
If the # of training samples is small, generalization ability 
can be improved by using RCDR techniques.
Performances of two rank correlations, Kendall τ and 
Spearman ρ, are almost equivalent.

more infomation: http://www.kamishima.net/

We would like to conclude our talk.
Our contributions are as follows.
More information is available in our Web site.
That’s all we have to say. Thank you for your attension.
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