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Abstract

Lists of ordered objects are widely used as representa-
tional forms. Such ordered objects include Web search re-
sults or best-seller lists. Clustering is a useful data anal-
ysis technique for grouping mutually similar objects. To
cluster orders, hierarchical clustering methods have been
used together with dissimilarities defined between pairs of
orders. However, hierarchical clustering methods cannot be
applied to large-scale data due to their computational cost
in terms of the number of orders. To avoid this problem,
we developed an k-o’means algorithm. This algorithm suc-
cessfully extracted grouping structures in orders, and was
computationally efficient with respect to the number of or-
ders. However, it was not efficient in cases where there are
too many possible objects yet. We therefore propose a new
method (k-o’means-EBC), grounded on a theory of order
statistics. We further propose several techniques to analyze
acquired clusters of orders.

1 Introduction

The term order indicates a sequence of objects sorted
according to some property. Such orders are widely used
as representational forms. For example, the responses from
Web search engines are lists of pages sorted according to
their relevance to queries. Best-seller lists, which are item-
sequence sorted according to sales volume, are used on
many E-commerce sites.
Clustering is the task of partitioning a sample set into

clusters having the properties of internal cohesion and ex-
ternal isolation. This method is a basic tool for exploratory
data analysis. For example, to cluster a set of orders, dis-
similarities are first calculated for all pairs of orders, and ag-
glomerative hierarchical clustering techniques are applied.
This approach is computationally inefficient, because com-
putational cost of agglomerative hierarchical clustering is
O(N2 log(N))) under non-Euclidean metric [6], where N
is the number of orders to be clustered. To alleviate this

inefficiency in terms ofN , we proposed a k-means-type al-
gorithm k-o’means in our previous work [3]. The compu-
tational complexity was reduced to O(N) in terms of the
number of orders. Though this method successfully ex-
tracted a grouping structure in a set of orders, it was not effi-
cient yet, if the number of possible objects to be sorted was
large. In this paper, to alleviate this inefficiency, we pro-
pose a new method, k-o’means-EBC. Note that EBC means
Expected Borda Count, which is a classic method to find
an order so as to be as concordant as possible with a given
set of orders. And incompleteness in orders are processed
based on a theory of order statistics. Additionally, we pro-
pose several methods for interpreting the clusters of orders.
We formalize this clustering task in Section 2. Our previ-

ous and new clustering methods are presented in Section 3.
The experimental results are shown in Sections 4 and 5.
Section 6 summarizes our conclusions.

2 Clustering Orders

In this section, we formalize the task of clustering or-
ders. We start by defining our basic notations regarding or-
ders. An object, entity, or substance to be sorted is denoted
by xj . The universal object set, X∗, consists of all possible
objects, and L∗ is defined as |X∗|. The order is denoted
by O = xa� · · · �xj� · · · �xb. Note that subscript j of x
doesn’t mean “The j-th object in this order,” but that “The
object is uniquely indexed by j in X∗.” The order x1�x2

represents “x1 precedes x2.” An object setX(Oi) or simply
Xi is composed of all objects in the orderOi. The length of
Oi, i.e., |Xi|, is denoted by Li. An order of all objects, i.e.,
Oi s.t. X(Oi)=X∗, is called a complete order; otherwise,
the order is incomplete. Rank, r(Oi, xj) or simply rij , is
the cardinal number that indicates the position of the ob-
ject xj in the order Oi. For example, for Oi=x1�x3�x2,
r(Oi, x2) or ri2 is 3. Two orders, O1 and O2, are concor-
dant if ordinal relations are consistent between any object
pairs commonly contained in these two orders; otherwise,
they are discordant.
The task of clustering orders is as follows. A set of



sample orders, S = {O1, O2, . . . , ON}, N ≡ |S|, is
given. Note that sample orders may be incomplete, i.e.,
Xi �=Xj, i �= j. In addition, Oi and Oj can be discordant.
The aim of clustering is to divide the S into a partition. The
partition, π = {C1, C2, . . . , CK}, K = |π|, is a set of all
clusters. Clusters are mutually disjoint and exhaustive, i.e.,
Ck ∩Cl = ∅, ∀k, l, k �= l and S = C1∪C2∪· · ·∪CK . Par-
titions are generated such that orders in the same cluster are
similar (internal cohesion), and those in different clusters
are dissimilar (external isolation).
Clusters are defined as a collection of similar orders;

thus, the similarity measures between two orders are re-
quired. Spearman’s ρ [4] is one such measure, signifying
the correlation between ranks of objects. The ρ between
two orders, O1 and O2, consisting of the same objects (i.e.,
X ≡ X(O1) = X(O2)) is defined as:

ρ =

∑
xj∈X

(
r1j − r̄1

)(
r2j − r̄2

)
√∑

xj∈X

(
r1j−r̄1

)2
√∑

xj∈X

(
r2j−r̄2

)2
, (1)

where r̄i = (1/L)
∑

xj∈X rij , L=|X |. The ρ becomes 1
if the two orders are concordant, and −1 if one order is
the reverse of the other order. If no tie in rank is allowed,
this can be calculated by the simple formula: ρ = 1 −
6dS(O1, O2)/(L3 − L), where dS(O1, O2) is Spearman’s
distance:

dS(O1, O2) =
∑

xj∈X (r1j − r2j)
2
. (2)

If two or more objects are tied, we give the samemidrank to
these objects [4]. The time complexity of computing Spear-
man’s ρ is O(L log L). For the clustering task, distance or
dissimilarity is more useful than similarity. We defined a
dissimilarity between two orders based on ρ:

dρ(O1, O2) = 1 − ρ(O1, O2). (3)

Since the range of ρ is [−1, 1], this dissimilarity ranges
[0, 2]. This dissimilarity becomes 0 if the two orders are
concordant.

3 Methods

3.1 k-o’means-TMSE
(Thurstone Minimum Square Error)

In [3], we proposed a k-o’means algorithm as a cluster-
ing method designed to process orders. To differentiate our
new algorithm described in detail later, we call it by a k-
o’means-TMSE algorithm.
A k-o’means-TMSE in Figure 1 is similar to the well-

known k-means algorithm. Specifically, an initial cluster
is refined by the iterative process of estimating new clus-
ter centers and the re-assigning of samples. This process

Algorithm k-o’means(S,K ,maxIter)
S = {O1, . . . , ON}: a set of orders
K: the number of clusters
maxIter: the limit of iteration times

1) S is randomly partitioned into a set of clusters:
π = {C1, . . . , CK},

π′ := π, t := 0.
2) t := t + 1,

if t > maxIter goto step 6.
3) for each cluster Ck ∈ π,

derive the corresponding central order Ōk .
4) for each order Oi in S,

assign it to the cluster: argminCk
d(Ōk, Oi).

5) if π = π′ then goto step 6;
else π′ := π, goto step 2.

6) output π.

Figure 1. k-o’means algorithm

is repeated until no changes in the cluster assignment is de-
tected or the pre-defined iteration time is reached. However,
different notions of dissimilarity and cluster centers have
been used to handle orders. For the dissimilarity d(Ōk, Oi),
equation (3) was used in step 4. As a cluster center in step 3,
we used the following notion of a central order [4]. Given a
set of ordersCk and a dissimilarity measure between orders
d(Oa, Ob), a central order Ōk is defined as the order that
minimizes the sum of dissimilarities:

Ōk = arg minO

∑
Oi∈Ck

d(O, Oi). (4)

Note that the order Ōk consists of all the objects in Ck, i.e.,
XCk

= ∪Oi∈Ck
X(Oi). Unfortunately, the optimal central

order is not tractable except for a special cases. Instead, we
use the following method to derive the minimum square er-
ror solution under a generative model of Thurstone’s law of
comparative judgment [7]. We call this clustering algorithm
by the k-o’means-TMSE (Thurstone Minimum Square Er-
ror) algorithm.
First, we estimate the probability Pr[xa � xb] that xa

precedes xb. This probability can be easily calculated by
counting the number of ordered pairs xa � xb in samples.
These probabilities are applied to a model of Thurstone’s
law of comparative judgment. This model assumes that
scores are assigned to each object xl, and an order is de-
rived by sorting according to these scores. Scores follow
a normal distribution; i.e., N(μl, σ), where μl is the mean
score of the object xl, and σ is a common constant standard
deviation. Under the minimum square error criterion of this
model [5], μ′

l, which is a linearly transformed image of μl,
is analytically derived as

μ′
l = 1

|XCk
|
∑

x∈XCk
Φ−1

(
Pr[xl � x]

)
, (5)



whereΦ(·) is a normal cumulative distribution function and
XCk

=
⋃

Oi∈Ck
Xi. The value of μ′

l is derived for each
object in XCk

. Finally, the central order Ōk can be derived
by sorting according to the corresponding μ′

l. Because the
resultant partition by k-o’means-TMSE is dependent on the
initial cluster, this algorithm is runmultiple times, randomly
changing the initial cluster; then, the partition minimizing
the following total error is selected:

∑
Ck∈π

∑
Oi∈Ck

d(Oi, Ōk). (6)

This k-o’means-TMSE could successfully find the cluster
structure in a set of incomplete orders.
However, the k-o’means-TMSE is not so efficient in

terms of time and memory complexity. Time or memory
complexity in N and K is linear, and these are efficient.
However, complexity in terms of L∗ is quadratic, and fur-
ther, the constant factor is rather large due to the calculation
of the inverse function of a normal distribution. To over-
come this inefficiency, we propose a new method in the next
section.

3.2 k-o’means-EBC
(Expected Borda Count)

To improve efficiency in computation time and memory
requirement, though we used the k-o’means framework in
Figure 1 and the dissimilarity measure dρ of equation (3) in
step 4 of Figure 1, we employed other types of derivation
procedures for the central orders.
Below, we describe this derivation method for a central

order Ōk of a cluster Ck in step 3 of Figure 1. We call this
the Expected Borda Count (EBC) method, and our new
clustering method is called a k-o’means-EBC algorithm.
The Borda Count method [2] is used to derive central orders
from complete orders; we modified this so as to make it ap-
plicable to incomplete orders. This method is equivalent to
sorting the objects in ascending order of the following mean
ranks: r̄j = 1

|Ck|
∑

Oi∈Ck
rij . If all sample orders are com-

plete and Spearman’s distance is used, it is known that the
central order derived by the above Borda Count optimally
minimizes Equation (4) [4, theorem 2.2]. In the case where
sample orders are complete, Spearman’s distance is propor-
tional to the distance dρ. Therefore, even in the case that
dρ is used as dissimilarity, the optimal central order can be
derived by this Borda Count method.
Unfortunately, this original Borda Count method cannot

be applied to incomplete orders. To cope with incomplete
orders, we must show the facts known in the order statistics
literature. First, we assume that there is hidden complete or-
der O∗

h which is randomly generated. A sample order Oi ∈
Ck is generated by selecting objects from thisO∗

h uniformly
at random. That is to say, from a universal object setX∗, Li

objects are sampled without replacement; then, Oi is gen-
erated by sorting these objects so as to be concordant with
O∗

h. Now we are given Oi generated through this process.
In this case, the complete orderO∗

h follows the distribution:

Pr[O∗
h|Oi] =

{
Li!
L∗! if O∗

h and Oi are concordant,

0 otherwise.
(7)

Based on the theory of order statics from a without-
replacement sample [1, section 3.7], if an object xj is con-
tained inXi, the conditional expectation of ranks of the ob-
ject xj in the order O∗

h given Oi is

E[r∗j |Oi] = rij
L∗+1
Li+1 , if xj ∈ Xi, (8)

where the expectation is calculated over all possible com-
plete orders, O∗

h, and r∗j ≡ r(O∗
h, xj). If an object xj is

not contained in Xi, the object is at any rank in the hidden
complete order uniformly at random; thus, an expectation
of ranks is

E[r∗j |Oi] = 1
2 (L∗ + 1), if xj /∈ Xi. (9)

Next, we turn to the case where a set of orders, Ck, con-
sists of orders independently generated through the above
process. EachOi ∈ Ck is first converted to a set of all com-
plete orders; thus, the total number of complete orders is
L∗!|Ck|. For each complete order, we assign weights that
follow equation (7). By the Borda Count method, an opti-
mal central order for these weighted complete orders can be
calculated. The mean rank of xj for these weighted com-
plete orders is

E[r̄j ] = 1
|Ck|

∑
Oi∈Ck

E[r∗j |Oi], (10)

where the expectation is calculated over all possible com-
plete orders. A central order is derived by sorting objects
xj ∈ XCk

in ascending order of the corresponding E[r̄j ].
Since objects are sorted according to the means of expecta-
tion of ranks, we call this method an Expected Borda Count
(EBC).
A central order derived by an EBC method is

optimal if the distance d(Oi, Ōk) is measured by∑
O∗

h∈S(L∗) Pr[O∗
h|Oi]dS(O∗

h, Ōk). Hence, in step 4 of
Figure 1, not dρ, but this distance should be used. How-
ever, it is intractable to compute this distance because its
computational complexity is O(L∗(L∗!/Li!)). Therefore,
we adopt dρ, and it empirically performed well, as is shown
later. The time complexity of a k-o’means-EBC is

O
(
K max(NL̄ log(L̄), L∗ log L∗)

)
, (11)

where L̄ is the mean of Li over S.



4 Experiments on Artificial Data

We applied the algorithms in Section 3 to artificially gen-
erated data, in order to examine the characteristics of each
algorithm.
The evaluation criteria for partitions was as follows. The

same object set was divided into two different partitions: a
true partition π∗ and an estimated one π̂. To measure the
difference of π̂ from π∗, we adopted the ratio of informa-
tion loss (RIL) [3], which is also called the uncertainty co-
efficient in numerical taxonomy literature. The RIL is the
ratio of the information that is not acquired to the total in-
formation required for estimating a correct partition. The
range of the RIL is [0, 1]; it becomes 0 if two partitions are
identical.
The generation procedure of artificial data sets is the

same as that in [3]. The parameters of the data generator
are summarized as

1) the number of sample orders: N = 1000
2) the length of the orders: Li = 10
3) the total number of objects: L∗ = 10
4) the number of clusters: K = 5
5) the inter-cluster isolation: {0.5, 0.2, 0.1, 0.001}
6) the intra-cluster cohesion: {1.0, 0.999, 0.99, 0.9}

The inter-cluster isolation is measured by the probability
that the ρ between the firstly generated central order and
another one is smaller than that between a pivot and a ran-
dom order. The larger the isolation, the more easily clusters
are separated. The intra-cluster cohesion is measured by the
probability that the ρ between the central order and a sample
one is larger than that between the central order and a ran-
dom one. The larger the cohesion, the more easily a cluster
could be detected. For each setting, we generated 100 sam-
ple sets. For each sample set, we ran the algorithms five
times using different initial partitions; then the best parti-
tion in terms of Equation (6) was selected. Below, we show
the means of RIL over these sets.
The experimental results on artificial data are shown in

Figure 2. The results are shown in Figure 2. The two k-
o’means methods were abbreviated to TMSE and EBC, re-
spectively. In addition, AVE indicates the result derived
by a group average hierarchical clustering in [3]. TMSE
was slightly better than EBC, and AVE was clearly the
worst. We suppose that this advantage of the k-o’means
is due to the fact that the dissimilarities between order pairs
could not be measured precisely if the number of objects
commonly included in these two orders is few. Further-
more, the time complexity of AVE is O(N2 log N), while
the k-o’means algorithms are computationally more inex-
pensive as in Equation (11). When comparing TMSE and
EBC, TMSE would be slightly better. However, in terms of
time complexity, TMSE’s O(NL∗ max(L∗, K)) is much

worse than EBC’s O(K max(NL̄ log(L̄), L∗ log L∗) if L∗

is large. In addition, while the required memory for TMSE
isO(L∗2), EBC demands far less O(KL∗). Therefore, it is
reasonable to conclude that k-o’means-EBC is an efficient
and effective method for clustering orders.

5 Experiments on Real Data

We applied our two k-o’means to questionnaire survey
data, and proposed a method to interpret the acquired clus-
ters of orders.
Since the notion of true clusters is meaningless for real

data sets, we used the k-o’means as tools for exploratory
analysis of a questionnaire survey of preference in sushi
(a Japanese food). This data set was collected by the pro-
cedure in our previous works [3]. In this data set, N =
5000, Li = 10, and L∗ = 100; in the survey, the proba-
bility distribution of sampling objects was not uniform as
in equation (7). We designed it so that the more frequently
supplied sushi in restaurants were more frequently shown
to respondents. Objects were selected independently with
probabilities ranging from 3.2% to 0.13%. Therefore, the
assumption of the uniformity of the sampling distribution,
introduced by the EBC method, was violated. The best re-
sult in terms of Equation (6) ware selected from 10 trials.
The number of clusters,K , was set to 2. Note that responses
of both authors were clustered into Cluster 1.
In this paper, we propose a new technique based on the

changes in object ranks. First, a central order of all the sam-
ple orders was calculated, and was denoted by Ō∗. Next,
for each cluster, the central orders were also calculated, and
were denoted by Ōk. Then, for each object xj in X∗, the
difference of ranks,

rankup(xj) = r(Ō∗, xj) − r(Ōk, xj), (12)

was derived. We say that xj is ranked up if rankup(xj) is
positive, and that it is ranked down if rankup(xj) is nega-
tive. If the object xj was ranked up, it was ranked higher
in cluster center Ōk than in the entire center Ō∗. By ob-
serving the sushi whose the absolute values of rankup(xj)
were large, we investigated the characteristics of each clus-
ter. Table 1 list the most 10 ranked up and the most 10
ranked down sushi in clusters derived by k-o’means-EBC.
That is to say, we show the objects whose rankup(xj) were
the 1st to 10th largest, and were the 1st to 10th smallest.
The upper half of the tables shows the ranked up sushi, and
the bottom half shows the ranked down sushi.
We interpreted this table qualitatively. In this table, the

mark ♠ indicates objects whose internal organs, such as
liver or sweetbread, are eaten. The sushi marked by ♦ are
so-called blue fish, and those marked by ♥ are clams or
shells. These sushi were rather substantial and oily. How-
ever, we could not conclude that the respondents in cluster 2
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Figure 2. Artificial data

Table 1. The top 10 ranked up & the worst 10 ranked down sushi

Cluster 1 Cluster 2
# 2313 2687

1 egg ♣ +74 ark shell ♥ +63
2 cucumber roll ♣ +62 crab liver ♠ +39
3 fermented bean roll ♣ +38 turban shell ♥ +26
4 octopus +36 sea bass +23
5 deep-fried tofu ♣ +33 abalone ♥ +22
6 salad ♣ +29 tsubu shell +16
7 pickled plum & perilla leaf roll ♣ +28 angler liver ♠ +16
8 fermented bean ♣ +26 sea urchin ♠ +15
9 perilla leaf roll ♣ +24 clam ♠ +13
10 raw beef +21 hardtail ♦ +13

...
...

91 flying fish ♦ -10 chili cod roe roll ♣ -15
92 young yellowtail ♦ -12 pickled plum roll ♣ -15
93 battera ♦ -13 shrimp -17
94 sea bass -14 tuna roll ♣ -19
95 amberjack ♦ -37 egg ♣ -19
96 hardtail ♦ -41 salad roll ♣ -27
97 fluke fin -46 deep-fried tofu ♣ -30
98 abalone ♥ -63 salad ♣ -32
99 sea urchin ♠ -84 octopus -57
100 salmon roe -85 squid -82

NOTE: Sushi in each cluster derived by k-o’means-EBC were sorted in descending order of
rankup(xj) (Equation (12)). In top row labeled “#”, the sizes of clusters were listed. The upper
half of the tables show the ranked up sushi, and the bottom half show the ranked down sushi. Just
to the right of each sushi name, the rankup(xj) values are shown.

preferred simply oily sushi. For example, sushi categorized
as a red fish meat, e.g., fatty tuna, were not listed in the ta-
ble, because the preference of sushi in this category were
similar in both clusters. We can say that the respondents
in cluster 2 preferred rather oily sushi, especially blue fish,
clam/shell, or liver. The sushi marked by ♣ are very eco-
nomical. Though these sushi were fairly ranked up in clus-
ter 1, this would not indicate a preference for economical
sushi. These would be ranked up because these respondents
had sushi that they disliked more than these inexpensive
types of sushi. Therefore, to interpret the acquired clus-
ter of orders, not only should the values of equation (12) be
observed, but also the kind of objects that were ranked up
or ranked down.

6 Conclusions

We developed a new algorithm for clustering orders
called the k-o’means-EBC method. This algorithm is far
more efficient in computation and memory usage than k-
o’means-TMSE. Therefore, this new algorithm can be ap-
plied even if the number of objectsL∗ is large. Additionally,
we advocated the method to interpret the acquired clusters.
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