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Abstract. Ordered lists of objects are widely used as representational
forms. Such ordered objects include Web search results and best-seller
lists. Techniques for processing such ordinal data are being developed,
particularly methods for an object ranking task: i.e., learning functions
used to sort objects from sample orders. In this article, we propose two
dimension reduction methods specifically designed to improve prediction
performance in an object ranking task.

1 Introduction

Orders are sequences of objects sorted according to some property and are widely
used to represent data. For example, responses from Web search engines are lists
of pages sorted according to their relevance to queries. Best-seller lists, which are
item sequences sorted according to sales volume, are used on many E-commerce
sites. Processing techniques for orders have immediate practical value, and so
research concerning orders has become very active in recent years. In particular,
several methods are being developed for learning functions used to sort objects
represented by attribute vectors from example orders. We call this task Object
Ranking [1, 2] and emphasize its usefulness for sensory tests1[2, 3], information
retrieval [4–8], and recommendation [9].

Several methods have been developed for the object ranking task. However,
when the attribute vectors that describe objects are in very high dimensional
space, these object ranking methods are degraded in prediction performance. The
main reason for this is that the number of model parameters to be learned grows
in accordance with the increase of dimensionality; thus, the acquired functions
might not perform well when sorting unseen objects due to over-fitting.

Dimension reduction techniques are one obvious solution to the problems
caused by high dimensionality. Dimension reduction is the task of mapping points
originally in high dimensional space to a lower dimensional sub-space, while lim-
iting the amount of lost information. Principal component analysis (PCA) is
one of the typical techniques for dimension reduction. PCA is designed so that
variations in original data are preserved as much as possible. It has been success-
fully used for other learning tasks but is less appropriate for an object ranking
task. Since PCA is designed so as to preserve information regarding the objects
1 measurement of respondents’ sensations, feelings or impressions
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themselves, useful information in terms of the target ordering might be lost by
this approach. Therefore, in this paper, we propose Rank Correlation Dimension
Reduction (RCDR) for dimension reduction in conjunction with object ranking.
RCDR is designed to preserve information that is useful for mapping to the
target ordering.

We propose our RCDR methods in Section 2. Experimental results are shown
in Section 3. We discuss and summarize the results in Section 4.

2 Rank Correlation Dimension Reduction

In the previous section, we defined an object ranking task. Here, we show a
dimension reduction technique specially designed for these object ranking meth-
ods. Note that the notations and the task of object ranking are described in our
survey chapter of this book [1].

To obtain satisfactory results when using data mining or machine learning
algorithms, it is important to apply pre-processing methods, such as feature
selection, dealing with missing values, or dimension reduction. Appropriate pre-
processing of data can improve prediction performance, and can occasionally
reduce computational and/or memory costs. Some pre-processing techniques for
mining or learning methods dealing with orders have been proposed. Bahamonde
et al. [10] applied wrapper-type feature selection to an object ranking task. Slotta
et al. [11] performed feature selection for classification of orders. In [12, 13],
rank statistics were used for selecting informative genes from microarray data.
To measure the similarities between orders, Kamishima and Akaho proposed
a method to fill in missing objects in orders [14]. To our knowledge, however,
dimension reduction techniques specially designed for an object ranking task
have not yet been developed.

Similar to other types of learning tasks, such as classification or regression,
dimension reduction techniques will be beneficial for object ranking tasks, in
particular, if the number of attributes, K, is very large. With reduced dimen-
sions, the generalization ability can be improved. Because the number of model
parameters to be learned grows in accordance with K, the acquired functions
might not perform well when sorting unseen objects due to over-fitting. In par-
ticular, if there are many non-informative attributes or if complex models are
used, the problem of over-fitting will be alleviated by reducing dimensions.

To reduce the number of dimensions before performing object ranking, one
might assume that reduction techniques used for other learning tasks can be
used. However, this is not the case. Principal component analysis (PCA) is one of
typical techniques for dimension reduction. PCA is designed so that information
about data in original attribute vector space is preserved as much as possible.
This approach is less appropriate for an object ranking task. Specifically, because
an object ranking task must find a mapping from attribute vectors to the target
ordering, it is not sufficient to preserve information only in source vectors. On
the other hand, Diaconis’ spectral analysis [15] for orders is another possibility.
This is a technique to decompose distributions of orders into sub-components.
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For example, first-order components represent the frequency that the object xj is
l-th ranked, while second-order components represent the frequency that objects
xj and xk are l-th and m-th ranked, respectively. However, our goal is not to
find decomposition in an ordinal space, but to find a sub-space in an attribute
vector space.

From the above discussion, it should be clear that we had to develop reduction
techniques that preserve information about mappings from attribute vectors to
the target ordering. This is analogous to Fisher’s discriminant analysis, which is
a dimension reduction technique to preserve information about a mapping from
an attribute vector to target classes.

Table 1. Computational complexities of object ranking algorithms

Cohen RankBoost SVOR Order SVM ERR

NL̄2K NL̄2K N2L̄4K N2L̄4K NL̄K2

NOTE: L̄: the mean length of sample orders, N : the number of samples, and K:
the dimension of attribute vectors. The number of ordered pairs and objects in S
are approximated by NL̄2 and NL̄, respectively. The SVM’s learning time is as-
sumed to be quadratic in the number of training samples. The learning complexities
of Cohen’s method or the RankBoost are as above if the number of iterations is con-
stant. However, in practical use, because the number of iterations should be increased
adaptively in accordance with the number of ordered pairs, their time complexities
approach N2L̄4k.

Additionally, the computational cost for reducing dimensions should not be
much higher than that for object ranking methods. Computational complexi-
ties of object ranking methods in the learning stage are summarized in Table 1.
These columns show the complexities for Cohen’s method [4], RankBoost [9],
Order SVM [16], Support Vector Ordinal Regression (SVOR) [5] (also known
as RankingSVM [6]), and Expected Rank Regression (ERR) [2]. You can find
a summary of these methods in [1]. We assume that the number of ordered
pairs and objects in S are approximated by NL̄2 and NL̄, respectively (L̄ is
the mean length of the sample orders). The SVM’s learning time is assumed to
be quadratic in the number of training samples. The learning time of Cohen’s
method or the RankBoost is linear in terms of NL̄2, if the number of itera-
tions is constant. However, in practical use, the number of iterations should be
increased adaptively. In the experiment in [9], the number of iterations was lin-
early increased in accordance with the number of ordered pairs, NL̄2. Therefore,
their time complexities approach N2L̄4k. When dimension reduction methods
require much higher computational costs than those in Table 1, the reduction of
dimensions greatly lessens scalability.

Taking into account what is mentioned above, our dimension reduction meth-
ods should satisfy two requirements.
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1. It must be designed so as to preserve information about mappings from
object attributes to targeting orders.

2. The computational complexity for dimension reduction should not be much
larger than that for object ranking algorithms.

To fill these requirements, we propose Rank Correlation Dimension Reduction
(RCDR). Given a basis that consists of l vectors, the next l+1 vector is selected
so as to preserve as much information about target ordering as possible. By
repeating this procedure, we obtain the final sub-space.
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Fig. 1. An outline of rank correlation dimension reduction method

First, we outline our RCDR method. Let w(l) be the l-th vector of a basis.
The sub-space spanned by the basis, {w(1), . . . ,w(l)}, is called the l-th sub-space.
We represent this sub-space by the matrix, W (l) = [w(1), . . . ,w(l)]. Let W (l)⊥

be the complementary space of the W (l), that is spanned by (K − l) vectors
which are orthogonal to all vectors in the basis, {w(1), . . . ,w(l)}. We are given
sample orders S and attribute vectors, {xj}, and the basis of the l-th sub-space.
This condition is depicted in Figure 1. The objects in the original K-dimensional
spaces (marked by “◦” in Figure 1) are projected to the complementary space
W (l)⊥ of the l-th sub-space. The projected objects (marked by “•” in Figure 1)
are denoted by x(l)

j , and x(0)
j ≡ xj . By this projection, we can eliminate in-

formation about the target ordering contained in the sub-space W (l). For each
k = 1, . . . ,K, objects are sorted in descending order of the k-th attribute values
of the objects projected to W (l)⊥. In Figure 1, examples of those orders are
x1≻x3≻x2 in the first attribute and x1≻x2≻x3 in the second attribute. The
rank correlations between each of these orders and each sample order are cal-
culated. Then, the sum of these rank correlations are denoted by R

(l)
k (strict
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definition will be given later). This R
(l)
k represents the concordance between the

target ordering and the k-th attribute values of the objects projected on the l-th
complementary space. A new vector, w(l+1), is chosen so that each element of
this vector, w

(l+1)
k , is as proportional to the corresponding concordance, R

(l)
k , as

possible.

Now, we formally describe our RCDR. Let w(l) = [w(l)
1 , w

(l)
2 , . . . , w

(l)
K ]⊤ be

the l-th vector of a basis. These vectors are orthonormal to each other, i.e.,
w(l)⊤w(m)=0, l ̸=m and ∥w(l)∥=1. The dimension of the final sub-space is de-
noted by K ′. We are given a set of sample orders S = {O1, . . . , ON}, the basis
of the l-th sub-space, W (l), and the objects {xj |xj ∈ XS}, XS ≡ ∪Oi∈SXi.
From these, we derive the (l+1)-th vector, w(l+1), as follows. First, we define
R

(l)
1 , . . . , R

(l)
K as the concordances between sample orders and the attribute val-

ues of the objects projected on the complementary space, W (l)⊥. Let us focus
on the sample order Oi and the k-th attribute values of objects. Because the
goal of an object ranking task is to estimate the orders of objects, the relative
ordering of attribute values is more important than the attribute values them-
selves. We therefore sort the k-th attribute values x

(l)
jk of all objects xj ∈ X (Oi)

in descending order, where x
(l)
jk denotes the k-th attribute value of the object,

x(l)
j projected on the l-th complementary space. Note that the projected objects

are represented as [x(l)
j1 , . . . , x

(l)
jK ]⊤ on the coordinates of the original space. The

resultant order is denoted by O(Xi, x
(l)
jk ). Because both this O(Xi, x

(l)
jk ) and the

sample order Oi consist of the same set of objects, the concordance between
these two orders can be measured by Kendall’s τ . Such rank correlations are
calculated between the k-th attribute values and each of sample orders in S, and
these correlations are summed up:

R
(l)
k =

∑
Oi∈S

τ(Oi, O(Xi, x
(l)
jk )). (1)

We use this sum as a measure of the concordance between the k-th attribute
values of objects and the target ordering. Next, to fill the first requirement of the
RCDR, the (l+1)-th vector is chosen so that the above concordance is preserved
as much as possible. Let us consider the vector,

R(l) = [R(l)
1 , . . . , R

(l)
K ]⊤.

Because the elements of this vector are the concordances between attribute val-
ues and the target ordering, this vector would point in the direction that pre-
serves information about the target ordering in the attribute space. Therefore,
we choose the vector w(l+1) so that it maximizes the cosine between w(l+1) and
R(l) in the complementary space, W (l)⊥. Further, the vector R(l) is constant,
and w(l+1) = 1; thus, the maximization of this cosine is equivalent to the w(l+1).
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This optimization problem is formalized as follows:

w(l+1) = arg max
w

w⊤R(l), (2)

subject to: ∥w(l+1)∥=1,w(l+1)⊤w(m) = 0, m=1, . . . , l.

Note that one might think that w(l) becomes a zero vector, if l ≥ 2, but this is not
the case. When the performing standard regression and Pearson’s correlation is
maximized, w(l) would be a zero vector for l ≥ 2. This is because zero Pearson’s
correlation implies such orthogonality in the attribute space. However, because
rank correlation doesn’t imply orthogonality, w(l) is generally a non-zero vector
even if l ≥ 2.

Inputs: S = {O1, . . . , ON}: a sample order set
xj ∈ XS ≡ ∪Oi∈SXi: attribute value vectors
K′: the dimension of sub-space

1: x
(0)
j ≡ xj

2: for all l in 0, . . . , (K′ − 1) do

3: compute R(l) s.t. R
(l)
k =

P

Oi∈S τ(Oi, O(Xi, x
(l)
jk ))

4: if l > 0 then
5: W (l)=[w(1), . . . ,w(l)]

6: R(l)⊥=(I−W (l)W (l)⊤)R(l)

7: else
8: R(l)⊥=R(l)

9: end if
10: w(l+1) = R(l)⊥/∥R(l)⊥∥
11: for all xj in XS do

12: x
(l+1)
j = x

(l)
j − w(l+1)w(l+1)⊤x

(l)
j

13: end for
14: end for
15: return W (K′) = [w(1), . . . ,w(K′)]

Fig. 2. Kendall rank correlation dimension reduction

Next, we solve Equation (2). The derivation of w(l+1) can be easily shown
by the following procedure: Calculate the vector of the correlations sums, R(l),
project this vector to the l-th complementary space, and normalize the pro-
jected vector. Once a new vector is derived, objects in the l-th complementary
space, x(l), are mapped to the new complementary space, and iteratively the
next vector can be computed. This algorithm is shown in Figure 2. R(l) is com-
puted in line 3, projected to the current complementary space in lines 4–9,
and normalized in line 10 so that its norm is one. In lines 11–13, the objects
in the current complementary space are projected to the new complementary
space. Because the concordance is measured by Kendall’s τ , we call this method
Kendall RCDR. The computational complexities of lines, 3, 4–9, 10, and 11–13
are O(NL̄2K), O(KK ′), O(K) and O(NL̄K), respectively; thus, the complexity
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per one iteration is O(NL̄2K) (generally NL̄2 ≫ K ′), and the total complexity is
O(NL̄2KK ′). As noted before, because the complexity of Cohen’s method and
RankBoost practically approaches O(N2L̄4K), our Kendall RCDR is strictly
faster than object ranking methods except for ERR (see Table 1). In practical
use, RCDR is not so slow than ERR, because L̄ is generally small. To further
save time complexity, we replace Kendall’s τ in line 3 of the algorithm by Spear-
man’s ρ, because ρ and τ are highly correlated. We call this method Spearman
RCDR. Because its time complexity is O(NKK ′L̄ log L̄), this method becomes
faster than the ERR method if K ′ log L̄ < K. Therefore, our RCDR methods
satisfy the second requirement. Note that the Kendall RCDR is faster than the
Spearman RCDR in the special case: Li = 2, Oi ∈ S. Joachims et al. proposed a
method to implicitly collect sample orders whose lengths are two [6]. The Kendall
RCDR is useful in such cases.

3 Experiments

After showing a simple example of our RCDR methods, we describe the experi-
mental results for real data sets.

3.1 A Preliminary Experiment

Table 2. Vectors of a Basis derived by our RCDRs and the PCA

the first vector

method 1 2 3 4 5

KRCDR 0.70 0.64 0.31 −0.06 −0.06 0.146
SRCDR 0.70 0.64 0.32 −0.06 −0.06 0.173
PCA 0.02 −0.74 0.54 −0.39 0.00 0.393

the second vector

method 1 2 3 4 5

KRCDR −0.27 −0.17 0.93 −0.13 −0.13 0.007
SRCDR −0.30 −0.15 0.94 −0.05 −0.05 0.007
PCA −0.06 −0.18 0.39 0.90 0.00 0.213

NOTE: The first to fifth columns of each table show the components of vectors, w(1)

and w(2). In the last columns, values of ∥R(l)∥/N are shown for the RCDRs and the
contribution ratio is shown for the PCA.

To show what is produced by our two RCDR methods, we present a sim-
ple example using artificial data. We give the ideal weight vector by w∗ =
[1, 1, 0.5, 0, 0], and set the dimensions of the original space as K = 5 and the
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number of objects as |X ∗| = 1000. For each object xj ∈ X ∗, the first to the
fourth attribute values are randomly generated according to the normal distri-
bution, N(0, 1), while the fifth value is equal to the fourth. We generated 300
sample orders as follows: Five objects were selected uniformly at random from
X ∗; then these objects were sorted in descending order of w∗⊤xj . We applied
Kendall RCDR, Spearman RCDR, and PCA to this data set. The first and sec-
ond vectors are shown in the upper and lower parts of Table 2, respectively. In
each row, we show vectors derived by Kendall RCDR, Spearman RCDR, and
PCA. The first to the fifth columns show the elements of vectors. In the last col-
umn, the norm lengths of the sum vector of rank correlations per sample order,
∥R(l)∥/N , are shown for the RCDR cases, and the contribution ratios are shown
for the PCA cases.

Let’s look at the first vector. The vectors derived by the two RCDR methods
show resemblance. This indicates that one can use the faster RCDR method;
concretely, Spearman RCDR is better except for the case Li = 2. Because the
fourth and the fifth elements of the w∗ are zero, no information useful for the
target ordering is represented in these axes. In our RCDR cases, the fourth
and the fifth weights of vectors are almost zero; thus, these useless axes can
be ignored. In the PCA case, the fourth weight is far from zero, because no
information about the target ordering is taken into account. The PCA merely
ignores axes that are correlated in attribute space, such as in the fifth element.
Further, because variances in all dimensions are equal, the contribution ratio is
not so large, even if the target ordering is decided by a linear function.

We turn to the second component. In the RCDR cases, the correlation vector
size ∥R(2)∥/N is much smaller than ∥R(1)∥/N ; this means that the second vector
is far less informative than the first, because the target ordering is generated
by a linear function in this example. In the PCA case, the contribution ratio
indicates that useful information still remains in this vector. Note that it is not
guaranteed that the ∥R(l)∥/N decreases in accordance with the increase of l, and
vectors with bigger ∥R(l)∥/N don’t always contribute to predicting the target
ordering. However, we empirically observed that if ∥R(l)∥/N is very small, the
corresponding vector is not informative. We believe that ∥R(l)∥/N can be used
as an index for the importance of vectors.

3.2 Experiments on Real Data Sets

We applied the methods described in Section 2 to real data from questionnaire
surveys2. The first data set was a survey of preferences in sushi (Japanese food),
and is denoted by SUSHI. In this data set, N = 500, Li = 10, and |X ∗| = 100.
Objects are represented by 12 binary and 4 numerical attributes. The second
data set was a questionnaire survey of news article titles sorted according to
their significance, and is denoted by NEWS. These news articles were obtained
from “CD-Mainichi-Newspapers 2003.” In this data set, N = 4000, Li = 7, and
|X ∗| = 11872. The variance among sample orders was slightly broader than the

2 http://www.kamishima.net/sushi/
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Note: The concordances between sample orders and estimated orders were measured
by Spearman’s ρ. These charts show variation of ρ in accordance with the number of
dimensions K′. The charts that labeled, ERR and SVOR, show the results derived by
the expected rank regression and the support vector ordinal regression, respectively.
N is the size of a data set and Li is the length of sample orders. The curves labeled
“ORIG” show the result derived without application of dimension reduction. The
curves labeled “KRCDR”, “SRCDR”, and “PCA” show the estimation results after
reducing dimensions by the corresponding method.

Fig. 3. Comparison of dimension reduction methods on SUSHI data sets
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curves labeled “ORIG” show the result derived without application of dimension re-
duction. The curves labeled “KRCDR”, “SRCDR”, and “PCA” show the estimation
results after reducing dimensions by the corresponding method.

Fig. 4. Comparison of dimension reduction methods on NEWS data sets
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SUSHI data. Titles were represented by 0-1 vectors indicating whether a specified
keyword appears in the title. Among 18381 keywords, we selected 595 keywords
that were observed 30 or more times. Additionally, we used 8 binary attributes
to represent article categories; thus, the number of attributes was 603 in total.

To evaluate the usefulness of our dimension reduction methods, we applied
the Support Vector Ordinal Regression (SVOR) [5] (also known as RankingSVM
[6]), and Expected Rank Regression (ERR) [1, 2]. to these two data sets. We used
our original implementation for the ERR and the SVMlight 3 for the SVOR. We
chose these two methods, because they differently behaved in the survey [2]. The
SVOR was robust for the noise in attribute values, but not for the perturbations
in sample orders. Contrarily, the ERR could resistant to ordinal noises, but not
to the variation in attribute values. As a family of fitting functions, no kernel
was used and a linear model was adopted.

Sample order sets were partitioned into testing and training sets. The ranking
function was learned from training a sample order set with original attributes or
reduced attributes. After learning, prediction performance was measured by the
mean of ρ between an order in a testing set, Ot, and the corresponding estimated
order, Ôt. The larger ρ was, the better the prediction performance was. The
number of folds in cross-validation was ten for SUSHI and five for NEWS. Note
that we reduced the number of folds in the NEWS experiment, because the size of
the NEWS data set was larger and we had to save required computational time. In
the left and right parts of the Figure 3 and 4, we show the variation of mean ρ in
accordance with the dimensions of the reduced space, K ′, for SUSHI and NEWS,
respectively. For both data sets, N or Li was varied by eliminating sample orders
or objects; the results for these sets are shown in each sub-figure. The charts
that labeled, ERR and SVOR, show the results derived by the expected rank
regression and the support vector ordinal regression, respectively. N and/or Li

increased from the sub-figure (a) to (c); thus, orders became the most difficult to
estimate in the sub-figure (a) case. The curves labeled by “KRCDR”, “SRCDR”,
and “PCA” show the mean ρ derived by ERR after applying Kendall RCDR,
Spearman RCDR, and PCA, respectively. The label “ORIG” indicates that no
reduction method was used, and original attribute vectors were adopted.

From these figures, the following conclusions can be drawn. First, in terms
of the variation according to the increase of the dimensions, both the ERR and
SVOR behaved very similarly. This showed that our RCDR technique is in-
dependent from the learning algorithms. Second, the two RCDR methods show
resemblance; thus, the faster method can be used for dimension reduction. Third,
both RCDRs performed better in prediction than PCA. The difference was par-
ticularly clear when the number of dimensions K ′ was small. This means that
RCDR successfully preserved information useful for estimating target orders.
Therefore, we can say that RCDR is more effective than PCA when carrying
out an object ranking task. Fourth, our RCDR technique could improve the pre-
diction performance. The curves labeled “SRCDR”/“KRCDR” were compared
with those labeled “ORIG.” The reduced vectors could lead to better predic-

3 http://svmlight.joachims.org/
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tion than the original vectors. We think that this is because the models used
for ordering were simplified while useful information was preserved. This can be
confirmed by the fact that the improvements were prominent when N and/or
Li were small. The simpler model could produce better generalization ability
for a limited number of samples. Therefore, our reduction technique is useful for
improving prediction performance.

Finally, we can exploit the components of vectors for qualitative analysis.
We obtained the first vector, w(1), derived from the SUSHI, N=500, Li=10 data
set by applying our Kendall RCDR method. The components of the vectors,
w

(1)
1 , . . . , w

(K)
K , were sorted in descending order of their absolute values, |w(1)

k |.
The top 5 components were as follows:

w
(1)
13 = 0.5951 the frequency the user eats

w
(1)
15 = 0.4278 how many restaurants supply the sushi

w
(1)
1 = 0.4237 red fish (e.g., fatty tuna)

w
(1)
14 = 0.2822 inexpensiveness

w
(1)
12 = −0.2317 lightness or non-oiliness in tasting

From these components, we can say that “users primarily prefer sushi that they
frequently eat and that is supplied in many sushi restaurants.”

4 Discussion and Conclusion

In this paper, we proposed a dimension reduction technique specialized for an
object ranking task. The method was designed so as to preserve information
about a relation from object attribute vectors to the target ordering. For this
purpose, we developed Kendall RCDR and Spearman RCDR. We then applied
these methods to real data sets. From the experimental results, we arrived at
the following conclusions. First, the RCDR methods outperform PCA when car-
rying out an object ranking task. Second, by using the RCDR technique, perfor-
mance in prediction can be improved, especially when training samples are not
adequate. Finally, our two RCDR methods are comparable in prediction per-
formance. Therefore, the faster method should be used; concretely, Spearman
RCDR is better except for the condition where Li = 2.

Intuitively speaking, in the l-th iteration of the RCDR, the algorithm finds
the vector that is most relevant to target ordering. After that, by mapping at-
tribute vectors to the new sub-space, components in attributes related to this
vector are subtracted. At this time, it might be effective to subtract the ex-
plained component in the target ordering from sample orders. We will try such
improvement by using a technique like Diaconis’ spectral analysis [15].
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