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Today, we’d like to talk about object ranking tasks and methods for this task.



Introduction
Object Ranking: Task to learn a function for ranking 
objects from sample orders
Discussion about methods for this task by connecting 
with the probabilistic distributions of rankings
Several properties of object ranking methods
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Order / Ranking
object sequence sorted according to a particular preference or property

prefer not prefer

> >
ex. an order sorted according to my preference in sushi
“I prefer fatty tuna to squid” but “The degree of preference is not specified”

Fatty Tuna Squid cucamber roll

An object ranking task is to learn a function for ranking objects from given sample orders.   We will discuss methods for this task by 
connecting with the probabilistic distributions of rankings.
We begin with what is an order or ranking.   An order is an object sequence sorted according to a particular preference or property.   For 
example, this is an order sorted according to my preference in sushi.   This order indicates that “I prefer a fatty tuna to squid”, but “The 
degree of preference is not specified.”



Outline
Whatʼs object ranking

Definition of an object ranking task
Connection with regression and ordinal regression
Measuring the degree of preference

Probability distributions of rankings
Thurstonian, paired comparison, distance-based, and multistage

Six methods for object ranking
Cohenʼs method, RankBoost, SVOR (a.k.a. RankingSVM), 
OrderSVM, ERR, and ListNet

Properties of object ranking methods
Absolute and relative ranking

Conclusion
3

This is an outline of our talk.    We begin by talking about definition of an object ranking task, its connection to regression or ordinal 
regression, and relation to the way for measuring the degree of preference.   Next, we will introduce probability distributions of rankings, 
because these are closely connected with object ranking methods.   Then, we briefly review six methods for object ranking: Cohen’s 
method, RankBoost, SVOR a.k.a Ranking SVM, OrderSVM, expected rank regression, and ListNet.   Additionally, we will show several 
properties of these methods.



Object Raking Task
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O1 = x1!x2!x3

O2 = x1!x5!x2

O3 = x2!x1

sample order set

x1
x2

x3

x4

x5

feature space
objects are represented by

feature vectors

ranking
function

Ôu = x1!x5!x4!x3

x1
x3

x4

x5Xu

object
ranking
method

unordered objects

estimated order

feature values are known

objects that donʼt appeared in training samples have to be ordered by referring 
feature vectors of objects

First of all, we’d like to show an object ranking task.   Training sample orders are sorted according to the degree of the target preference to 
learn.   Objects in these orders are represented by feature vectors.   From these samples, an object ranking method acquires a ranking 
function.   By applying this learned function, unordered objects can be sorted according to the degree of the target preference.   Note that 
objects that don’t appeared in training samples have to be ordered by referring feature vectors of objects.



Object Ranking vs Regression

5

Object Ranking: regression targeting orders

input
X1

X3

X2

regression curve

X1

Y3

Y2

X3X2

Y1

additive noise

Yʼ3
Yʼ2

Yʼ1
sample

Yʼ3
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Yʼ1

 generative model of regression

input
X1

X3

X2

regression order
ranking function

X1 X3X2! !

sample

X1 X2X3! !

permutation noise
random permutation

X1 X2X3! !

 generative model of object ranking

Next, we will show the connection between object ranking and regression.   Object ranking can be considered as regression targeting 
orders.   This is a generative model of object ranking.   A ranking function sorts input objects according to the degree of the target 
preference and a regression order is generated. This order is then affected by permutation noise, and a sample order is generated.   This 
model is very similar to a generative model of regression, like this.



Ordinal Regression
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Ordinal Regression [McCullagh 80, Agresti 96]

Regression whose target variable is ordered categorical
Ordered Categorical Variable
Variable can take one of a predefined set of values that are ordered
ex. { good, fair, poor}

Differences between “ordered categories” and “orders”Differences between “ordered categories” and “orders”
Ordered Category Order

The # of grades is finite The # of grades is infinite

ex: For a domain {good, fair, poor}, the # of grades is limited to threeex: For a domain {good, fair, poor}, the # of grades is limited to three

Absolute Information is contained It contains purely relative information
ex: While “good” indicates absolutely preferred, “x1 > x2” indicates that 
x1 is relatively preferred to x2
ex: While “good” indicates absolutely preferred, “x1 > x2” indicates that 
x1 is relatively preferred to x2

Object ranking is more general problem than ordinal regression as a learning task

Ordinal regression is also analogous to object ranking.   Ordinal regression is regression whose target variable is ordered categorical.   
Ordered categorical variables can take one of predefined a set of values that are ordered. For example, good, fair, poor.
This is a summary of the differences between “ordered categories” and “orders.”   The number of grades of an ordered category is finite, 
and ordered categorical values provide absolute information.
Due to these differences, object ranking is more general problem than ordinal regression as a learning task.



Measuring Preference
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Ranking Method

The user prefers the item A most, and the item B least
Objects are sorted according to the degree of preference

prefer not
prefer> >itemA itemC itemB

ordinal regression (ordered categories)

object ranking (orders)

Using scales with scores (ex. 1,2,3,4,5) or ratings (ex. gold, silver, bronze)
The user selects “5” in a five-point scale if he/she prefers the item A

prefernot
preferitemA

Scoring Method / Rating Method

54321

These two tasks are related to schemes for measuring the degree of preference.
Ordinal regression is related to scoring and rating methods.    The user selects “5” in a five-point-scale, if he/she prefers the item A.
On the other hand, object ranking is related to ranking method.   By the user, objects according to the degree of preference.
In next two slides, we will compare these schemes.



Demerit of Scoring / Rating Methods
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Difficulty in caliblation over subjects / items

presentation bias

Mappings from the preference in usersʼ mind to rating scores differ 
among users

Standardizing rating scores by subtracting user/item mean score is 
very important for good prediction [Herlocker+ 99, Bell+ 07]

Replacing scores with rankings contributes to good prediction, even if 
scores are standardized [Kmaishima 03, Kamishima+ 06]

The wrong presentation of rating scales causes biases in scores

When prohibiting neutral scores, users select positive scores more 
frequently [Cosley+ 03]

Showing predicted scores affects usersʼ evaluation [Cosley+ 03]

Scoring and rating methods have the following demerits.
First, mappings from the preference in users’ mind to rating scores differ among users.   Standardizing rating scores is important for good 
prediction, and replacing scores with rankings contributes to good prediction.
Second, the wrong presentation of rating scales causes biases in scores.   These are examples of such biases.



Demerit of Ranking Methods
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Lack of absolute information

Orders donʼt provide the absolute degree of preference
Even if “x1 > x2” is specified, x1 might be the second worst

Difficulty in evaluating many objects

Ranking method is not suitable for evaluating many objects at the same 
time

Users cannot correctly sort hundreds of objects
In such a case, users have to sort small groups of objects in many 
times

On the other hand, demerits of ranking methods are as follows.
First, orders don’t provide the absolute degree of preference.   Even if x1 is preferred to x2 is specified, x1 might be the second worst
Second, ranking method is not suitable for evaluating many objects at the same time.   Because users cannot correctly sort hundreds of 
objects
That's all we have to say about an object ranking task and its connections to regression and ordinal regression.



Distributions of Rankings
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Thurstonian: Objects are sorted according to the objectsʼ scores
Paired comparison: Objects are ordered in pairwise, and these 
ordered pairs are combined
Distance-based: Distributions are defined based on the distance 
between a modal order and sample one
Multistage: Objects are sequentially arranged top to end

 generative model of object ranking

regression order permutation noise+

4 types of distributions for rankings [Crichlow+ 91, Marden 95]

The permutation noise part is modeled by using probabilistic distributions 
of rankings

Now, we move on to the probabilistic distributions of rankings, because these are closely connected object ranking methods.
Let’s remind that a generative model of object ranking composed of two parts: regression order and permutation noise.   The later is 
modeled by using distributions of rankings.   These distributions can be classified into four types.  We will introduce these distributions one 
by one.



Thurstonian

11

Thurstonian model (a.k.a Order statistics model)
Objects are sorted according to the objectsʼ scores

For each object, the 
corresponding scores are 

sampled from the 
associated distributions

Sort objects according to 
the sampled scoresA C B> >

A CBobjects

Normal Distribution: Thurstoneʼs law of comparative judgment 

Gumbel Distribution: CDF is  
[Thurstone 27]

distribution of scores

1− exp(− exp((xi − µi)/σ)

First, in a Thurstonian model, objects are sorted according to the objects’ scores.
For each object, the corresponding scores are sampled from the associated distributions. Then, objects are sorted according to the sampled 
scores.
If its score distribution is normal, the model is known as “Thurstone’s law of comparative judgment.” Another choice is Gumbel 
distribution, which is related to order statistics.



Paired Comparison
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Paired comparison model
Objects are ordered in pairwise, and these ordered pairs are combined

Objects are ordered in pairwise
A B CB C A

cyclicacyclic
A > B C > A

B > C

A

B C

A > B A > C

B > C

A

B C

Abandon and retrygenerate the order: A > B > C

Babinton Smith model: saturated model with nC2 paramaters

Bradley-Terry model:  

parameterization

Pr[xi ! xj ] = vi
vi+vj

[Babington Smith 50]

[Bradley+ 52]

Second, in a paired comparison model, objects are compared, and these ordered pairs are combined.
In the first step, ordered pairs are generated independently.   If these ordered pairs are cyclic, namely, these are contradicted each other, all 
pairs are abandoned and generated again. If these pairs are acyclic, all objects can be sorted without contradiction.
The most general saturated model is know as Babington Smith model, because Babington Smith firstly calculated the moments of 
distributions.   A Bradley-Terry model has less parameters.



Distance between Orders
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squared Euclidean 
distance between two 

rank vectors

Spearman distance

D > B > A > C

A > B > C > DO1

O2

rank vectors

1 2 3 4

3 2 4 1

A DCB

Kendall distance
B > A > C

A > B > CO1

O2

A > B A > C B > C

B > CA > CB > A # of discordant pairs 
between two orders

decompose into ordered pairs

OKOKNO!

Spearman footrule
Manhattan distance 

between two rank vectors

Before showing distance-based model, we briefly review the distances between orders.
Orders are first converted into rank vectors, whose entries are ranks of the corresponding objects.  Spearman distance is squared Euclidean 
distance between rank vectors, and Spearman foot rule is Manhattan distance.   Kendall distance is defined as the number of discordant 
pairs between two orders.



Distance-based
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Distance-based model
Distributions are defined based on the distance between orders

Spearman distance: Mallowsʼ θ model

Kendall distance:  Mallowsʼ φ model

distance

[Mallows 57]

Pr[O] = C(λ) exp(−λd(O,O0))
normalization factor

modal order/rankingconsentration parameter

distance

These are the special cases of Mallowsʼ model (φ=1 or θ=1),
which is a paired comparison model that defined as:

Pr[xi ! xj ] = θi−jφ−1

θi−jφ−1+θj−iφ

Third, in a distance-based model, distributions are defined based on the distance between orders like this formula.  When orders are more 
distant from the modal ranking, the orders are less frequently generated. If Spearman distance is used, this model is called Mallows’ θ 
model.   If Kendall distance is used, this is called Mallows’ φ model.   These are special cases of this Mallows’ model.



Multistage
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Multistage model
Objects are sequentially arranged top to end

Plackett-Luce model [Plackett 75]

ex. objects {A,B,C,D} is sorted into A > C > D > B

Pr[A] =

Pr[A>C | A] =

θA

θA + θB + θC + θD

θB + θC + θD

θC

Pr[A>C>D | A>C] =
θB + θD

θD

Pr[A>C>D>B | A>C>D] = θB / θB = 1

total sum of params

a param of the top object

params for A is eliminated
a param of the second object

The probability of the order, A > C > D > B, is
Pr[A>C>D>B] = Pr[A] Pr[A>C | A] Pr[A>C>D | A>C] 1

Finally, in a multistage model, objects are sequentially arranged top to end.   Plackett-Luce model generates ranking as follows. The top 
object is generated with this probability.  The numerator is a parameter of the top object, and the denominator is the total sum of 
parameters. The second object is generated with this probability.   The numerator is a parameter of the second object, but the denominator 
is the sum of parameters of objects excluding already ranked objects.   In consequence, the probability of this order is the product of these 
probabilities. 
Now, we have completed to introduce four types of distributions for rankings.



Object Ranking Methods
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Thurstonian: Expected Rank Regression (ERR)
Paired comparison: Cohenʼs method
Distance-based: RankBoost, Support Vector Ordinal Regression 
(SVOR, a.k.a RankingSVM), OrderSVM
Multistage: ListNet

Object Ranking Methods

permutation noise model: orders are permutated accoding to the 
distributions of rankings
regression order model: representation of the most probable 
rankings
loss function: the definition of the “goodness of model”
optimization method: tuning model parameters

connection between distributions and permutation noise model

Next, I'd like to move on to the main topic: object ranking methods.   Object ranking methods consist of these components.    Like other 
ML methods, loss functions and optimization methods are of course important.   Permutation noise models of object ranking methods are 
connected with the distributions of rankings as shown in this table.   Regression order model represents the most probable rankings as in 
the next slide.



Regression Order Model
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linear ordering: Cohenʼs method

sorting by scores: ERR, RankBoost, SVOR, OrderSVM, ListNet

1. Given the features of any object pairs, xi and xj, f(xi, xj) represents 
the preference of the object i to the object j

2. All objects are sorted so as to maximize:
∑

xi!xj
f(xi,xj)

This is known as Linear Ordering Problem in an OR literature [Grötschel+ 84], 
and is NP-hard =>  Greedy searching solution O(n2)

1. Given the features of an object, xi, f(xi) represents the preference of 
the object i

2. All objects are sorted according to the values of f(x)

Computational complexity for sorting is O(n log(n))

Regression order models can be classified into two types.
A “linear ordering” model is used only in Cohen’s method.   Score function represents the preference of the object i to the object j. All 
objets are sorted so as to maximize the sum of scores over all concordant ordered pairs. This is known as linear ordering problem in an 
operational research literature.
A “sorting by scores” model is used in all other methods.  In this model, all objects are sorted according to the values of the score function.
We next show six object ranking methods one by one.



Cohenʼs Method
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[Cohen+ 99]

permutation noise model = paired comparison
regression order model = linear ordering

training sample orders

A!B!C
D!E!B!C

A!D!C

ordered pairs

A!B,A!B,B!C
D!E,D!B,D!C, · · ·

A!D,A!C,D!C

sample orders are decomposed into ordered pairs

the preference function that one object precedes the other

f(xi,xj) = Pr[xi!xj ;xi,xj ]

Unordered objects can be sorted by solving linear ordering problem

Cohen’s method adopts a paired comparison approach.
Sample orders are first decomposed into ordered pairs.   From these pairs, the algorithm learns a preference function that one object 
precedes the other.   Unordered objects can be sorted by solving linear ordering problem.



RankBoost
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[Freund+ 03]

permutation noise model = distance based (Kendall distance)
regression order model = sorting by scores

find a linear combination of weak hypotheses by boosting

A
B

ht(A)
ht(B) ht(B) ! ht(A)

ht(A) ! ht(B)
or

objects partial information
about the target order

weak hypotheses

score function: f(x) =
∑T

t=1 αtht(x)

This function is learned so that minimizing the number of discordant pairs

minimizing the Kendall distance between samples and  the regression order

The RankBoost tries to find a score function, which is a linear combination of weak hypotheses.   Given an object, weak hypotheses 
provides some partial information about the target order.   This function is learned by boosting so that minimizing the number of discordant 
pairs.   Therefore, this method is considered as  minimizing the Kendall distance to the regression order.



Support Vector Ordinal Regression
(SVOR; a.k.a RankingSVM) [Herbrich+ 98, Joachims 02]
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permutation noise model = distance based (Kendall distance)
regression order model = sorting by scores

sample orders score & margin Objective

maximize:∑

X,Y

marginXY

A > B > C

A > D > C
score(A) score(D) score(C)

score(A) score(B) score(C)

marginAB marginBC

marginAC

find a score function that maximally separates preferred objects from 
non-preferred objects

Support Vector Ordinal Regression is also known as RankingSVM.   SVOR tries to find a score function that maximally separates 
preferred objects from non-preferred ones.  To maximize the separation, the margins between the closest pair is maximized.



OrderSVM
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[Kazawa+ 05]

permutation noise model = distance based (Spearman footrule)
regression order model = sorting by scores

find a score function which maximally separates higher-ranked objects 
from lower-ranked ones on average

sample orders score & margin Objective

maximize:
∑

j

∑

X,Y

marginj
XY

A > B > C score(A) score(B) score(C)

Rank 1
high low

margin1AC
margin1AB

Rank 2

score(A) score(B) score(C)
high low

margin2AC
margin2BC

Another SVM for object ranking is OrderSVM.
OrderSVM tries to find a score function which maximally separate higher-ranked from lower-ranked by comparing some threshold.   These 
separations are performed for all thresholds between adjacent ranks.



SVM and Distance-based Model
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SVOR (RankingSVM)

OrderSVM

minimizing the # of misclassifications in orders of object pairs

minimizing the Kendall distance between regression order and samples

separate the objects that ranked lower than j-th from the higher ones,
and these separations are summed over all ranks j

ex: object A is ranked 3rd in sample and 5th in regression order

separation
thresholds

# of misclassifications =  absolute difference between ranks

minimizing the Spearman footrule between regression order and samples

We here summarize the relations between two SVMs and a distance-based model.
SVOR minimizes the number of misclassifications in orders of object pairs. This is equivalent to minimizing the Kendall distance between 
regression order and samples.
OrderSVM separates the objects that ranked lower than l-th from the higher ones, and these separations are summed over all ranks l.  
Consider the case that an object A is ranked 3rd in sample and 5th in regression order. In this case, classifications are failed at two 
thresholds.   That is to say the number of misclassifications equals to absolute difference between ranks.   Therefore, OrderSVM can be 
considered as minimizing the Spearman footrule between regression order and samples.
(Diaconis-Graham inequality: d_Ken+d_Cay ≦ d_Foot ≦ 2 d_Ken)



Expected Rank Regression (ERR)
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[Kamishima+ 05]

permutation noise model = Thurstonian
regression order model = sorting by scores

expected ranks in a complete order are estimated from samples, and a 
score function is learned by regression from pairs of expected ranks 
and feature vectors of all objects

complete order

sample order

consisting of all possible objects, 
free from permutation noise,

unobservedA B C D E F> > > > >

DCA > >

consisting of sub-sampled objects, 
with permutation noise,

observed

Because expected ranks are considered as the location parameters of 
score distributions, this method is based on Thurstonian model

Our expected rank regression assumes the existence of complete order, which is consisting of all possible objects, free from permutation 
noise, but unobserved.   Expected ranks in a complete order are estimated from samples for all observed objects.   A score function is 
learned by regression from pairs of an expected rank and feature vector of all objects.   Because expected ranks are considered as the 
location parameters of score distributions, this method is based on Thurstonian model.



Expected Rank
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A < B < C < D < E A < B < D

C E

miss miss
unobserved

complete order
observed

sample order

observed rank

31 2 4 5 31 2

expected rank

∝(length of a observed order ) + 1
rank in a observed orderexpectation of ranks

in a unobserved complete order

[Arnold+ 92]

To perform ERR, expected ranks have to be computed.   To do this, we use simple theorem in a order statistics literature.   Objects are 
selected uniformly at random, and these are missed, then sample orders are observed.  In this case, expectation of ranks in a unobserved 
complete order over all possible missing patterns is proportional to the rank in an observed order divided by the length of a observed order 
plus one.   We adopted this quantity as a expected rank.



ListNet
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[Cao+ 07]

permutation noise model = Multistage
regression order model = sorting by scores

Straightforward modification of Plackett-Luce model, and parameters 
are optimized by using neural networks

f(xi)∑
j f(xj)

score for the next 
ranked objectsum of scores for the not 

yet ranked objects

scores functions, f(xi), are linear,
and these weights are estimated by maximum likelihood

Parameters of objects are replaced with
score functions of object features

ListNet is a straightforward modification of a Plackett-Luce model. Parameters of objects are replaced with functions of object features. The probability of 
the next ranked object is the score for the next ranked object divided by the sum of scores for the not yet ranked objects.   Score functions are linear, and 
these weights are estmated by maximum likelihood and are optimized by using neural networks.
That covers what we want to say about six object ranking methods.



Absolute / Relative Ranking
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absolute ranking 
functionobjects {A,B,C} are sorted as:

A > B > C

C is replaced with D
{A,B,D}

A must be 
always ranked 
higher than B

In other words, either D>A>B, A>D>B, or A>B>D is allowed

absolute ranking function

absolute ranking 
function

relative ranking function
Other than absolute ranking function

If you know Arrowʼs impossibility theorem, this is related to its condition I

Finally, we’d like to discuss several properties of object ranking tasks.
We propose notions of absolute and relative ranking, which are the properties that the learned ranking function should have.   Absolute 
ranking function satisfy the following condition.   Consider the case that objects A, B, C are sorted as A>B>C by an absolute ranking 
function. In this case, even if C is replaced with D, A must be always ranked higher than B by the same ranking function. In other words, 
either D>A>B, A>D>B, or A>B>D is allowed.   If a ranking function doesn’t satisfy this condition, it is called relative ranking function.   
If you know Arrow’s impossibility theorem, this is related to its condition I.   



Absolute / Relative Ranking
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For IR or recommendation tasks, absolute ranking functions should 
be learned. For example, the fact that an apple is preferred to an 
orange is independent from the existence of a banana.
Only few tasks suited for relative ranking

regression order model

sorting by scores

absolute ranking
function

linear ordering

relative ranking
function

This property is connected with the regression order model. If an object ranking method adopts a “sorted by scores” model, its ranking 
function becomes absolute, because the degrees of preference are determined independently.   For information retrieval or recommendation 
tasks, absolute ranking functions should be learned.   This is because, for example, the fact that an apple is preferred to an orange is 
independent from the existence of a banana. On the other hand, only few tasks suited for relative ranking.
In the next two slides, we will show two types of applications.



Relevance Feedbacks
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Leaning from relevance feedback is a typical absolute ranking task 

Ranked List for the query Q

1: document A
2: document B
3: document C
4: document D
5: document E

selected
by user

Object ranking methods can be used to update documentʼs 
relevance based on these feedbacks

The user scans this list from 
the top, and selected the third 
document C.

The user checked the 
documents A and B, but these 
are not selected.

This userʼs behavior implies 
relevance feedbacks: C>A and 
C>B.

[Joachims 02, Radlinski+ 05]

Learning from relevance feed back is a typical absolute ranking task.   Joachims proposed a method for implicitly obtaining the relevance 
feedbacks.   Given a ranked list for the query Q, the user scans this list from the top, and selected the third document C.   The user checked 
the documents A and B, but these are not selected.   This user’s behavior implies relevance feedback: The document C is more relevant than 
the A or B.   Object ranking methods can be used to update document’s relevance based on these feedbacks.



Multi-Document Summarization
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[Bollegala+ 05]
Example of relative ranking task: Multi-Document Summarization (MDS)

documents important
sentences

generation of
summary

Generating summaries is sorting sentences appropriately

From the samples of correctly sorted sentences,
object ranking methods learns ranking functions

features of sentences: chronological info, precedence, relevance among sentences

Appropriate order of sentences are influenced by the relevance to the 
other sentences or the importance relative to the other sentences

Absolute ranking functions are not appropriate for this task

To my knowledge, this is an only example of relative ranking task: Multi-Document Summarization (MDS).   Experimental results are not 
so good, but I think this is interesting application of object ranking.   Given multiple documents, important sentences are picked-up, and a 
summary is generated from these sentences.   Generating summary is sorting sentences appropriately.   To achieve this, from the samples of 
correctly sorted sentences, object ranking methods learns ranking functions.
In this case, appropriate order of sentences are influenced by the relevance to the other sentences or the importance relative to other 
sentences.   Therefore, absolute ranking functions are not appropriate for this task.



Attribute and Order Noise
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Order Noise

Attribute Noise

xi = (xi1, . . . , xik)

A C B ! ! A B C ! !
noiseless order observed sample

order noise is the permutation in orders

objects are represented by attribute vectors

attribute noise is the perturbation in attribute values

Next, we’d like to show interesting experimental results about the difference between SVMs and non-SVMs.   We investigated the 
robustness against two types of noise on synthetic data.   One is order noise,which is the permutation in orders.   The other is attribute noise, 
which is the perturbation in attribute values.



Robustness against Noises
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0.6

0.7

0.8

0.9

1.0

0% 0.1% 1% 10%

ERR SVOR

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0% 20% 40% 80% 160%

good

bad

good

bad
highlow highlow

Order Noise Attribute Noise

Vertical: prediction concordance     Horizontal: noise level

robust against order noise
robust against attribute noise

non-SVM-based
SVM-based

[Kamishima+ 05]

These figures show the variation of prediction concordance in accordance with the noise level.    An orange curve is SVM-based results, 
and the other is non-SVM-based results.   These two sets of curves are clearly contrasted.   SVM-based methods are robust against attribute 
noise, but are not robust against order noise.   On the other hand, non-SVM-based methods conversely behaves.



SVM-based Cases
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Order Noise Attribute Noise

points move
in an attribute 

space
decision boundary

an order in 
samples is 
chnaged

Slight change in features never 
influences the results,

 if changing within decision 
boundary

Changed points become support-
vectors with high probability,
and the results are seriously 

influened

A > B A < B A > B A < B

SVM-based methods solves object ranking tasks as classification: A>B or A<B

points corresponds to object pairs

We consider that this experimental results can be explained as follows:
SVM-based methods solves object ranking tasks as classification: A precedes to B or A succeeds to B.   If orders in samples are permuted, 
changed points become support-vectors with high probability, and seriously affect the results.   On the other hand, slight change in features 
never influences the results, if changing within decision boundary.



non-SVM-based Cases
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A!B B!A

Order Noise

Attribute Noise

samples are moved from B>A to A>B

Results are not influenced, if majority class between these two do not 
change 

Any little changes in features influences the loss function, due to the 
lack of the robustness features like hinge loss of SVMs

We next discuss non-SVM-based cases.
In a case of order noise, if samples are moved from class B>A to A<B, results are not affected, if majority classes between these two do not 
change. In the other attribute noise case, any little changes in features influences the loss function, due to the lack of the robustness features 
like hinge loss of SVMs.
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Powerful linear model

Efficiency

Accuracy
We compared the prediction accuracies of object ranking methods 
except for ListNet [Kamishima+ 05].   Though several differences are 
observed, we think that, like other ML tasks, the appropriate choices for 
the target task is primally important.

Two SVMs are slow than non-SVMs, and our ERR is fast in almost cases

Linear models for ranking functions are more powerful than in standard 
regression or classification. This is because any monotonic functions 
are equivalent to linear function as ranking score function.
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define object ranking task and discuss relation with regression and 
ordinal regression problems
introduce four types of distributions for rankings: Thurstonian, paired 
comparison, distance-based, and multistage
show six methods for object ranking tasks: Cohenʼs method, 
RankBoost, SVOR(=RankingSVM), OrderSVM, ERR, and ListNet
propose the notion of absolute and relative ranking tasks
discuss about the prediction accuracy of object ranking methods

SUSHI data: preference in sushi surveyed by ranking method
http://www.kamishima.net/sushi/
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