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ABSTRACT
A recommender system has to collect users’ preference data. To
collect such data, rating or scoring methods that use rating scales,
such as good-fair-poor or a five-point-scale, have been employed.
We replaced such collection methods with a ranking method, in
which objects are sorted according to the degree of a user’s prefer-
ence. We developed a technique to convert the rankings to scores
based on order statistics theory. This technique successfully im-
proved the accuracy of ranking recommended items. However, we
targeted only memory-based recommendation algorithms. To test
whether or not the use of ranking methods and our conversion tech-
nique are effective for wide variety of recommenders, we apply our
conversion technique to model-based algorithms.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering

General Terms
Measurement

Keywords
Recommender System, Ranking Method, Order Statistics, Sensory
Test

1. INTRODUCTION
A recommender system suggests items that a user would prefer.

Collaborative filtering (CF) is an algorithm that implements this
recommender system by automating the word-of-mouth paradigm.
CF requires data that represent the degrees of a user’s preferences in
items, and a scoring or a rating method is widely used for collecting
such data. In both methods, the system shows an item to a user
and records the degree of the user’s preference to the item on a
scale. While a scoring method uses a numerical scale, e.g., a scale
of 1 to 5, a rating method adopts ratings with ordered labels, e.g.,
{good, fair, poor}. The use of these measurement methods has
been successful in performing CF. However, these methods have
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a few properties that are inappropriate when measuring a user’s
preferences, as we point out in the next section.
We have therefore advocated a framework called Nantonac Col-

laborative Filtering1 [8, 9], which is a CF framework that adopts a
ranking method to capture users’ preference patterns. In a ranking
method, a set of items is shown to a user, who ranks these items
according to the degree of his/her preference.
In our previous work, we advocated a technique to convert rank-

ing data to preference scores. Further, our experimental results
showed that the relative degree of preference could be more ac-
curately predicted from the converted scores. However, because
we adopted only memory-based algorithms for recommendation, it
was not clear whether the use of a ranking method and our con-
version technique were useful for the other types of recommenda-
tion algorithms, namely model-based methods. Both memory- and
model-based methods have their own pros and cons, and sophisti-
cated model-based methods were developed and used in commer-
cial systems [3]. We therefore tested whether or not the use of
a ranking method is also beneficial to two model-based methods:
pLSA [6] and matrix decomposition [12].
Our motivation in employing a ranking method is discussed in

section 2. In sections 3 and 4, we present our model-based nan-
tonac CF methods and experimental results, respectively. Section 5
summarizes our conclusions.

2. WHY IS A RANKING METHOD USED?
To accurately predict items that a user prefers, the precise mea-

surement of a user’s preference patterns is very important. For this
measurement, a scoring or rating method has been adopted in al-
most all CF systems. To our knowledge, no other measurement
methods, such as pairwise comparison, choice, or ranking meth-
ods, have been tested in CF.
We here show a weak point of a scoring method. In Figure 1(a),

we intuitively show how scores are captured by a scoring method.
The unobserved true preferences and observed scores are shown in
the upper and lower panels of the figure, respectively. In the figure,
because the true preference of item X is in user A’s interval 2, user
A will respond with a score of 2. If we are measuring a physical
quantity, such as length or weight, the mapping from quantities to
observed values can be defined based on an objective and invari-
ant criterion, such as the speed of light or the kilogram prototype.
However, when we measure a preference, it is difficult to share such
an invariant and objective mapping between true preference and ob-
served score, because each user uses his/her own mapping based on

1The word “nantonac” originates from a Japanese word, “nanton-
aku,” which means “just somehow.” For example, in Japanese, if I
say “I nantonaku understand something,” I am saying that I cannot
specifically explain why I understand it, but that I somehow do.
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Figure 1: Mapping between unobserved true preferences and observed scores

a subjective and variable criterion in his/her own mind. The map-
pings therefore tend to be inconsistent between users A and B. Fur-
ther, when mapping back from the observed scores to the induced
preference as in Figure 1(b), the system uses a common scale, and
thus the induced degrees of preference might shift from the orig-
inal. For example, item X lies in interval 3 of user B’s mapping
scale as in Figure 1(a). However, in Figure 1(b), B’s true prefer-
ence lies in interval 4 of the common mapping, while the induced
preference (depicted by X’ in the figure) deviates from the origi-
nal degree. To avoid these defects, we advocated nantonac CF [8],
in which a user’s preference is measured by a ranking method. In
this ranking method, a user responds by ordering objects according
to his/her preference (Figure 1(c)). Mapping from true preference
to observed order is simple: the more preferred items are ranked
higher, and these mappings are common for all users.
One might think that these shifts in scores can be canceled by

using calibration techniques. In [4], instead of the Pearson corre-
lation, rank correlation is used to evaluate the similarity between
two users. Further, rating scores are normalized by subtracting the
mean of scores. According to our previous work [9], the adop-
tion of a ranking method is advantageous even if these techniques
are employed. This can be explained as follows. As pointed out
in [13], only trained experts, e.g., wine tasters, can maintain a con-
sistent mapping throughout a given session, and untrained users’
mappings generally change for each response. It is known that
users’ responses are roughly correlated, but can drift slightly [5].
In a ranking method, this is not problematic, because only the si-
multaneously evaluated items are considered.
However, this ranking method has a few limitations. It is gener-

ally difficult to sort so many items at the same time. This limitation
can be alleviated by sorting small multiple sets of items separately
as in [9]. A scheme to collect ordered pairs was proposed in [7].
Another restriction is the lack of absolute information about pref-
erence. Because ranking methods merely provide a user’s relative
preferences, the system can predict which items are more preferred
than compared items, but it cannot determine whether an item is
absolutely preferred among all items. Therefore, a ranking method
is inappropriate for a system displaying absolute ratings, e.g., five
stars, but it is useful for estimating which choice is better to support
users’ decision making.

3. METHODS
Collaborative filtering is a task to predict the preferences of a par-

ticular user (an active user) based on the preference data collected
on other users (sample users). We first formalize a standard CF task

using preferences captured by a scoring method. x ∈ {1, . . . , n}
and y ∈ {1, . . . , m} denote a user and an item, respectively. sxy

denotes the score given by a user x to an item y. The score takes
one of the values on a rating scale, such as a five-point scale, and
represents the degree of preference. A training set consists of tu-
ples, D = {(xk, yk, sxkyk )}, k = 1, . . . , N . A set of items rated
by user x is denoted by Yx = {y|(x′ = x, y, s) ∈ D}. Given the
set D, we want to derive a function, ŝxy = f(x, y), that predicts a
preference score for any pairs of a user x and an item y.
We move on to a nantonac CF incorporating a ranking method.

In the case of nantonac CF, the system shows a set of items,
Yx, to user x, who sorts them according to the degree of
his/her preference. The sorted order is denoted by Ox =
yl1�· · ·�ylj�· · ·�yl|Ox| , where |Ox| is the length of an order
Ox. The order y1�y2 means that “y1 is preferred to y2.” The
j-th item, ylj , is an element of Yx.
We proposed a technique to extend CF methods that targeted

scores in order to enable to deal with preference orders. In this
technique, each preference order is converted into a set of scores
based on the following theorem. We assume the existence of the
unobserved complete preference order, O∗, which is generated by
sorting all the items {1, . . . , m} according to the user’s preference.
Then, a portion of the items are sampled uniformly at random from
this order, and these items are sorted so as to be concordant with
this complete order. This resultant order is treated as the user’s re-
sponse order, O. We here denote the rank of an item y in an order
O by r(y, O), which indicates that y appears at the r(y, O)-th po-
sition in the order O. According to [1], the conditional expectation
of the rank of an item y in an order O∗ given O is

E[r(y, O∗)|O] = r(y, O)
|O∗| + 1

|O| + 1
. (1)

Because |O∗| is constant for any observed order O, E[r(y, O∗)|O]
is proportional to r(y, O)/(|O| + 1). Based on this theorem, we
convert a response order,

Ox = yl1� · · ·�ylj� · · ·�yl|Ox|,

into a set of tuples,

n
(x, yl1 , 1/(|Ox| + 1)), . . . , (x, ylj , j/(|Ox| + 1)),

. . . , (x, yl|Ox| , |Ox|/(|Ox| + 1))
o

.

Standard CF methods targeting scores can be applied to this con-
verted set of scores. The only difference from standard scores is
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that items with smaller converted scores indicates a stronger prefer-
ence in items, whereas a larger value implies a stronger preference
on a standard score scale. This conversion technique might seem
rather brute-force, but it has worked well even in tasks other than
CF, such as clustering [10] or object ranking [11].
We previously applied this conversion technique to a memory-

based CF method developed for Grouplens [14] and its extensions
[4]. We here introduce this technique to two model-based CF meth-
ods: pLSA [6] and matrix decomposition [12].
pLSA was originally proposed to derive a compact representa-

tion of words and documents, but it was applied to a CF task [6]
and was used in a commercial system, GoogleNews [3]. The three-
way model in [6] was slightly modified so as to deal with real value
scores. Formally, z is a latent discrete random variable, whose do-
main is {1, . . . , K}, and follows a categorical distribution, which
is aK-way generalization of a Bernoulli distribution. Discrete ran-
dom variables for a user and an item are denoted by x and y, re-
spectively. Each of them conditionally follows a categorical distri-
bution given z. In addition, a real random variable for scores, s,
conditionally follows a normal distribution given z. Consequently,
a log-likelihood function for a training set D is

L(D; Θ) =
X

(x,y,s)∈D
log

X
z

Pr[z] Pr[x|z] Pr[y|z]N (s; μz, σ2
z).

Parameters maximizing this function can be easily derived by using
an EM algorithm. Once model parameters are learned, a preference
score for an item y by a user x can be inferred by calculating a
conditional expectation,

ŝxy = E[s|x, y] =

P
z μz Pr[z] Pr[x|z] Pr[y|z]N (s; 0, σ2

z)P
z Pr[z] Pr[x|z] Pr[y|z]

.

We further introduced a bias cancellation technique in [2], which
was shown to alleviate the influences of various biases in scores
collected by a scoring method. First, to alleviate a global effect,
we computed b, which is the mean score over all scores in D, from
each score, and we get modified scores s′xy = sxy − b. From
each modified score, the mean of all scores s′ of an item y, dy ,
is subtracted, and we get s′′xy = s′xy − dy . We further subtract
the mean score over all scores s′′ rated by a user x, cx, and get
s′′′xy = s′′xy − cx. Scores in a training set D are replaced with these
modified scores, and the above pLSA model is learned. After a
modified score, ŝ′′′xy , is estimated, the score is corrected by adding
biases, i.e., ŝxy = ŝ′′′xy + b + cx + dy .
The second model-based method is based on matrix decomposi-

tion (MD for short) in equation (4) in [12]. In this model, a prefer-
ence score is predicted by

ŝxy = b + cx + dy + u�
y

h
vx + (

X
y′∈Yx

wy′)/
p

|Yx|
i
, (2)

where b, cx, and dy are parameters for canceling global, per-user,
and per-item biases, respectively. uy , vx, and wy are parameters
with K-dimensional vectors. A dot product of uy and vx repre-
sents the cross effect between items and users, and the term wy

is intended to take into account the information about which items
each user rates. These parameters are tuned so as to minimize the
following loss function:

loss(D; Θ) =
X

(x,y,s)∈D
(sxy − ŝxy)2 + λR,

where R is the sum of L2-regularization terms for all parameters
except global bias, b, and λ is a regularization hyperparameter. The
parameters are optimized so as to minimize this loss function. Once

the parameters are learned, preference scores for any user and item
pairs can be predicted by equation (2).

4. EXPERIMENTS
We next applied the model-based methods to our data set col-

lected by using both ranking and scoring methods.

4.1 Datasets
To test the effectiveness of adopting a ranking method, we ap-

plied the methods in the previous section to our sushi data sets2.
These data sets were collected by the same procedure as in [8], but
the number of users was increased to 5000.
The preference data were collected through the following pro-

cedure. Before collecting the data, we surveyed menu data from
25 sushi restaurants found on the Web. For each type of sushi,
we counted the number of restaurants that listed the sushi on their
menu. From these counts, we derived the probability that each item
would be supplied. Note that using this distribution violates the uni-
form assumption of equation (1), but even in such a case, the later
experimental results show the effectiveness of our score conversion
technique. By eliminating unfamiliar or low-frequency items, we
compiled a list of 100 items.
We generated two item sets, which were presented as Yx to each

user. The type A set (YA) was common for all users and composed
of ten items: shrimp, sea eel, tuna, squid, sea urchin, salmon roe,
egg, fatty tuna, tuna roll, and cucumber roll. This set was used
for testing. The other type B sets (YB

x ) were different for each
user. Ten items were randomly sampled according to the above
probability distribution of items. The orders in this item set were
treated as user responses. Note that YA and YB

x had an overlap of
2.58 items per order on average.
We collected the responses via a commercial Web survey service.

The following queries were presented for each user x:
1) We asked the user to sort items in theYA set according to his/her
preference and get a response order OA

x .
2) We asked the user to rate the items in the YB

x set by a scoring
method using a five-point scale. The set of response scores was
denoted by SB

x .
3, 4) Next two questions were irrespective to preferences. These
two questions lessened the influence of query 2 on query 5.
5) We asked the user to sort the items in the YB

x set according to
his/her preference and thus obtained a response order OB

x .
6) The users were asked some demographic questions.
We screened users whose demographic features were rare or whose

response times were either too short or too long, and the data set
consequently included 5000 tuples: (OA

x , OB
x , SB

x ). We checked
the ratio of responses that contained a contradiction between SB

x

and OB
x . Here, a contradiction means that, although the item ya

precedes yb in OB
x , the score of yb in SB

x is rated higher than that
of ya, and vice versa. Only 31.7% of users rated all items without
such a contradiction. This fact at least shows that different aspects
of preference can be captured by ranking and scoring methods.

4.2 Experimental Results
Two model-based methods, pLSA and MD, were applied to the

above sushi data set. Response orders,OB
x , of all users were merged

and converted, and we obtained a data set DO . Similarly, response
scores, SB

x , of all users were merged, forming another data setDS .
Hyperparameters of model-based methods were tuned by minimiz-

2Sushi is a Japanese food. Data sets can be obtained from the site:
http://www.kamishima.net/sushi/.
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Figure 2: Changes in rank correlations between true and pre-
dicted orders

ing the squared errors derived by five-fold cross validation for each
data set. We set the hyperparameters as follows:

method \ data DO DS

pLSA K=2, α = 1.0 K=3, α = 0.1
MD K=5, λ=0.01 K=5, λ=0.03

(α is a parameter of Dirichlet prior for Pr[x|z] and Pr[y|z])

Using these hyperparameters and and entire data set, DO or DS ,
the models were trained. For each user x, the scores of all items
in YA were predicted by each of these models. By sorting these
items according to this user’s predicted scores, we obtained a pre-
dicted preference order, ÔA

x . The concordance between the true
order, OA

x , and the predicted order, Ô
A
x , was measured by Spear-

man’s rank correlation, ρ, a widely used metric of the concordance
between two orders. Note that MAE or squared error were widely
used, but such absolute evaluation metrics are meaningless for data
captured by a ranking method, as described in section 2.
We changed the number of rated items per user, i.e., |YB

x |, by
subsampling, and corresponding changes in Spearman’s ρ are shown
in Figure 2. MD or PLSA indicate the types of methods, and suf-
fixes O and S indicate that these results were obtained from training
sets, DO and DS , respectively. If the number of items per user
was three or more, adoption of a ranking method improved the
accuracy of prediction. However, when |YB

x | was two, a scoring
method is superior, as was also observed in our previous work [8].
In the case of a scoring method, two items are rated by using a five-
point scale, and thus there are 10 possible choices in total. In the
case of a ranking method, one can choose which of two items is
preferred. Clearly, less information is provided from users with a
ranking method. However, we can conclude that adopting a rank-
ing method is generally fruitful for obtaining the recommendations
performed by model-based methods.

5. CONCLUSION
We previously developed memory-based CFmethods to deal with

preference orders collected by using a ranking method. Here, the
same technique is embedded into two model-based methods, pLSA
and MD, which were applied to our sushi data set. Experimental
results showed that it was effective for adopting a ranking method
for collecting preference data.
Unfortunately, compared to memory-based methods, these model-

based methods were inferior. We therefore plan to improve these
model-based methods for orders.
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