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Abstract—With the spread of data mining technologies
and the accumulation of social data, such technologies and
data are being used for determinations that seriously affect
individuals’ lives. For example, credit scoring is frequently
determined based on the records of past credit data together
with statistical prediction techniques. Needless to say, such
determinations must be nondiscriminatory and fair regarding
sensitive features such as race, gender, religion, and so on.
Several researchers have recently begun to develop fairness-
aware or discrimination-aware data mining techniques that
take into account issues of social fairness, discrimination, and
neutrality. In this paper, after demonstrating the applications
of these techniques, we explore the formal concepts of fairness
and techniques for handling fairness in data mining. We
then provide an integrated view of these concepts based
on statistical independence. Finally, we discuss the relations
between fairness-aware data mining and other research topics,
such as privacy-preserving data mining or causal inference.
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I. INTRODUCTION

In this paper, we outline analysis techniques of fairness-

aware data mining. After reviewing concepts or techniques

for fairness-aware data mining, we discuss the relations

between these concepts and the relations between fairness-

aware data mining and other research topics, such as privacy-

preserving data mining and causal inference.

The goal of fairness-aware data mining is for data-analysis

methods to take into account issues or potential issues

of fairness, discrimination, neutrality, and independence.

Techniques toward that end were firstly developed to avoid

unfair treatment in serious determinations. For example,

when credit scoring is determined, sensitive factors, such

as race and gender, may need to be deliberately excluded

from these calculations. Fairness-awareness data mining

techniques can be used for purposes other than avoiding

unfair treatment. For example, they can enhance neutrality

in recommendations or achieve data analysis that is inde-

pendent of information restricted by laws or regulations.

Note that in a previous work, the use of a learning

algorithm designed to be aware of social discrimination

was called discrimination-aware data mining. However, we

hereafter use the terms, “unfairness” / “unfair” instead of

“discrimination” / “discriminatory” for two reasons. First,

as described above, these technologies can be used for var-

ious purposes other than avoiding discriminatory treatment.

Second, because the term discrimination is frequently used

for the meaning of classification in the data mining literature,

using this term becomes highly confusing.

After demonstrating applications tasks of fairness-aware

data mining in section II and defining notations in section III,

we review the concepts and techniques of fairness-aware

data mining in section IV and discuss the relations between

these concepts in section V. In section VI, we show how

fairness-aware data mining is related to other research topics

in data mining, such as privacy-preserving data mining and

causal inference. Finally, we summarize our conclusions in

section VII.

II. APPLICATIONS OF FAIRNESS-AWARE DATA MINING

Here we demonstrate applications of mining techniques

that address issues of fairness, discrimination, neutrality,

and/or independence.

A. Determinations that are Aware of Socially Unfair Factors

Fairness-aware data mining techniques were firstly pro-

posed for the purpose of eliminating socially unfair treat-

ment [1]. Data mining techniques are being increasingly

used for serious determinations such as credit, insurance

rates, employment applications, and so on. Their emergence

has been made possible by the accumulation of vast stores

of digitized personal data, such as demographic information,

financial transactions, communication logs, tax payments,

and so on. Needless to say, such serious determinations must

guarantee fairness from both the social and legal viewpoints;

that is, they must be fair and nondiscriminatory in relation

to sensitive features such as gender, religion, race, ethnicity,

handicaps, political convictions, and so on. Thus, sensitive

features must be carefully treated in the processes and

algorithms of data mining.

According to the reports of existing work, the simple

elimination of sensitive features from calculations is insuf-

ficient for avoiding inappropriate determination processes,

due to the indirect influence of sensitive information. For
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example, when determining credit scoring, the feature of

race is not used. However, if people of a specific race live in

a specific area and address is used as a feature for training

a prediction model, the trained model might make unfair

determinations even though the race feature is not explicitly

used. Such a phenomenon is called a red-lining effect [2] or

indirect discrimination [1]. Worse, avoiding the correlations

with sensitive information is becoming harder, because such

sensitive information can be predicted by combining many

pieces of personal information. For example, users’ demo-

graphics can be predicted from the query logs of search en-

gines [3]. Click logs of Web advertisements have been used

to predict visitors demographics, and this information was

exploited for deciding how customers would be treated [4].

Even in such cases that many factors are complexly compos-

ited, mining techniques must be demonstrably fair in their

treatment of individuals.

B. Information Neutral Recommendation

Techniques of fairness-aware data mining can be used

for making recommendations while maintaining neutrality

regarding particular viewpoints specified by users.

The filter bubble problem is the concern that personaliza-

tion technologies, including recommender systems, narrow

and bias the topics of information provided to people,

unbeknownst to them [5]. Pariser gave the example that

politically conservative people are excluded from his Face-

book friend recommendation list [6]. Pariser’s claims can be

summarized as follows. Users lose opportunities to obtain

information about a wide variety of topics; the individual

obtains information that is too personalized, and thus the

amount of shared information in our society is decreased.

RecSys 2011, which is a conference on recommender

systems, held a panel discussion focused on this filter bubble

problem [7]. Because selecting specific information by def-

inition leads to ignoring other information, the diversity of

users’ experiences intrinsically has a trade-off relation to the

fitness of information for users’ interests, and it is infeasible

to make absolutely neutral recommendation. However, it is

possible to make an information neutral recommendation

[8], which is neutral from a specific viewpoint instead of

all viewpoints. In the case of Parisers Facebook example,

a system could enhance the neutrality of political view-

point, so that recommended friends could be conservative

or progressive, while the system continues to make biased

decisions in terms of other viewpoints, for example, the

birthplace or age of friends. Thus, techniques of fairness-

aware data mining can be used for enhancing neutrality in

recommendations.

C. Non-Redundant Clustering

We give an example of the use of clustering algorithm that

can deal with the independence from specified information,

which was developed before the proposal of fairness-aware

data mining. Coordinated Conditional Information Bottle-

neck (CCIB) [9] is a method that can acquire clusterings

that are statistically independent from a specified type of

information. This method was used for clustering facial

images. Simple clustering methods found two clusters: one

contained only faces, and the other contained faces with

shoulders. If this clustering result is useless for a data

analyzer, the CCIB could be used for finding more useful

clusters that are composed of male and female images,

independent of the useless information. As in this example,

techniques of fairness-aware data mining can be used to

exclude useless information.

III. NOTATIONS

We define notations for the formalization of fairness-

aware data mining. Random variables, S and X, respectively

denote sensitive and non-sensitive features. Techniques of

fairness-aware data mining maintain fairness regarding the

information expressed by this sensitive feature. In the case

of discrimination-aware data mining (section II-A), the sen-

sitive feature may regard gender, religion, race, or some

other feature specified from social or legal viewpoints. In the

case of information neutral recommendation (section II-B), a

sensitive feature corresponds to a users specified viewpoint,

such as political convictions in the example from Pariser.

In an example of non-redundant clustering (section II-C),

useless information is expressed as a sensitive feature. S
can be discrete or continuous, but it is generally a binary

variable whose domain is {+,−} in existing researches.

Individuals whose sensitive feature takes values of + and −
are in an unprotected state and a protected state, respectively.

The group of all individuals who are in a protected state

is a protected group, and the rest of individuals comprise

an unprotected group. Non-sensitive features consist of all

features other than sensitive features. X is composed of K
random variables, X(1), . . . , X(K), each of which can be

discrete or continuous.

Random variable Y denotes a target variable, which ex-

presses the information in which data analysts are interested.

If Y expresses a binary determination in a discrimination-

aware data mining case, the advantageous class corresponds

to the positive class, +, while − indicates the disadvanta-

geous class. In an implementation of an information neutral

recommender system in [8], Y is a continuous variable

representing preferential scores of items.

An individual is represented by a pair of instances, x
and s, of variables, X and S. A (normal) true model,
M̃[Y |X, S], is used for determining the instance value of

a target variable, Y , for an individual represented by x and

s. Because this determination process is probabilistic, this

true model corresponds to a conditional distribution of Y
given X and S. M̂[Y |X, S] denotes a (normal) estimated
model of this true model. A true fair model, M̃†[Y |X, S],
is a true model modified so that the fairness of the target
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Figure 1. A summary of notations of models and distributions

variable is enhanced. We call an estimated model of this true

fair model by the estimated fair model, M̂†[Y |X, S].
Instances x and s are generated according to the true

distribution of X and S, P̃[X, S], and an instance, y, is

sampled from a distribution represented by the true model,

M̃[Y |X, S]. A joint distribution obtained by this genera-

tive process is denoted by P̃[Y,X, S]. A data set, D =
{(yi,xi, si)}, i = 1, . . . , N , is generated by repeating this

process N times. P[Y,X, S] denotes a sample distribution
observed over this data set.

Estimated value ŷ is obtained by applying (xi, si) ∈ D
to an estimated model, M̂[Y |X, S], and a triple (ŷ,x, s)
is generated. This process is repeated for all data in D,

and we get an estimated data set, D̂. An estimated sample
distribution induced from a sample distribution and an esti-

mated model is denoted by P̂[Y,X, S]. The marginalized and

conditioned distributions of these three types of distributions,

P̃[Y,X, Y ], P[Y,X, Y ], and P̂[Y,X, Y ], are represented by

the same symbols. A true fair distribution, a sample fair
distribution, and an estimated fair distribution are obtained

by substituting normal models, M̃[·] and M̂[·], with fair

models, M̃†[·] and M̂†[·], and these are represented by P̃†[·],
P†[·], and P̂†[·], respectively. An estimated fair data set, D̂†,
is generated by a similar generative process of an estimated

data set, D̂, but an estimated fair model is used instead of

an estimated model. The above definitions of notations of

models and distributions are summarized in Figure 1.

IV. CONCEPTS FOR FAIRNESS-AWARE DATA MINING

In this section, we overview existing concepts for fairness-

aware data mining; and, relationship among these concepts

will be discussed based on the statistical independence in the

next section. Fairness indexes, which measure the degree of

fairness, are designed for examining the property of true

distributions and for testing estimated models and estimated

fair models. Because true distributions are unknown, these

indexes are calculated over data sets, D, D̂, or D̂†. Hereafter,

we focus on the indexes computed from D, but same the

arguments can be used with respect to D̂ and D̂†.

A. Extended Lift and α-Protection

Pedreschi et al. pioneered a task of discrimination-aware

data mining that was to detect unfair treatments in associ-

ation rules [1], [10]. The following rule (a) means that “If

a variable city, which indicates residential city, takes the

value NYC, the variable credit, which indicates whether

application of credit is allowed, takes the value, bad.”

(a) city=NYC ==> credit=bad -- conf:(0.25)
(b) race=African, city=NYC

==> credit=bad -- conf:(0.75)

The term conf at the ends of the rules represents the

confidence, which corresponds to the conditional probability

of a condition on the right-hand side given a condition on

the left-hand side.

This task targets association rules whose consequents

at the right-hand side represent a condition for the target

variable, Y . Conditions regarding variables, S and X(j),

appear only in antecedents on the left-hand side. Extended
lift (elift) is defined as

elift(A, B→ C) =
conf(A, B→ C)

conf(B→ C)
, (1)

where A and C respectively correspond to conditions S=−
and Y=−; and B is a condition associated with a non-

sensitive feature. This extended lift of a target rule, which

has the condition S=− in its antecedent, is a ratio of the

confidence of the target rule to the confidence of a rule

that is the same as the target rule except that the condition

S=− is eliminated from its antecedent. If the elift is

1, the probability that an individual is disadvantageously

treated is unchanged by the state of a sensitive feature, and

determinations are considered fair. As this elift increases,

determinations become increasingly unfair. If the elift of

a rule is at most α, the rule is α-protected; otherwise, it is

α-discriminatory.

Further, consider a rule A, B→ C̄, where C̄ is a condition

corresponding to an advantageous status, Y=+. Due to the

equation P[C̄|A, B] = 1 − P[C|A, B], even if all rules are α-

protected, α-discriminatory rules can be potentially induced

from rules of the form, A, B → C̄. Strong α-protection is

a condition that takes into account such potentially unfair

cases.

The above α-discriminative rules contain a condition

associated with a sensitive feature in their antecedents; and

such rules are called directly discriminative. Even if an

antecedent of a rule has no sensitive condition, the rule

can be unfair induced by the influence of features that are

correlated with a sensitive feature; and such rules are called

indirectly discriminative.
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Various kinds of indexes for evaluating unfair determi-

nations have been proposed [11]. This paper further in-

troduced statistical tests and confidence intervals to detect

unfair treatment over a true distribution, instead of a sample

distribution. Then, they proposed a method to correct unfair

treatments by changing class labels of original data. Hajian

and Domingo-Ferrer additionally discussed data modifica-

tion for removing unfair rules by changing the values of

sensitive features [12]. A system for finding unfair rules was

developed [13].

B. Calders and Verwer’s Discrimination Score

Calders and Verwer proposed Calders-Verwer’s discrim-

ination score (CV score) [2]. This CV score is defined

by subtracting the probability that protected individuals get

advantageous treatment from the probability that unprotected

individuals do:

CVS(D) = P[Y=+ |S=+]− P[Y=+ |S=−], (2)

where sample distributions P[·] are computed over D. As

this score increases, the unprotected group gets more ad-

vantageous treatment while the protected group gets more

disadvantageous treatment.

Using this CV score, we here introduce an example of

a classification problem in [2] to show the difficulties in

fairness-aware learning. The sensitive feature, S, was gender,

which took a value, Male or Female, and the target class,

Y , indicated whether his/her income is High or Low. There

were some other non-sensitive features, X . The ratio of

Female records comprised about 1/3 of the data set; that

is, the number of Female records was much smaller than

that of Male records. Additionally, while about 30% of

Male records were classified into the High class, only 11%

of Female records were. Therefore, Female–High records

were the minority in this data set.

In the analysis, the Female records tended to be classified

into the Low class unfairly. The CV score calculated directly

from the original data was CVS(D) = 0.19. After training a

naı̈ve Bayes classifier from data involving a sensitive feature,

an estimated data set, D̂, was generated. The CV score for

this set increased to about CVS(D̂) = 0.34. This shows

that Female records were more frequently misclassified

to the Low class than Male records; and thus, Female–

High individuals are considered to be unfairly treated. This

phenomenon is mainly caused by an Occam’s razor prin-

ciple, which is commonly adopted in classifiers. Because

infrequent and specific patterns tend to be discarded to

generalize observations in data, minority records can be

unfairly neglected.

The sensitive feature is removed from the training data

for a naı̈ve Bayes classifier and another estimated data

set, D̂′, is generated. However, the resultant CV score is

CVS(D̂′) = 0.28, which still shows an unfair treatment for

minorities, though it is fairer than CVS(D̂). This is caused

by the indirect influence of sensitive features. This event is

called a red-lining effect, a term that originates from the

historical practice of drawing red lines on a map around

neighborhoods in which large numbers of minorities are

known to dwell. Consequently, simply removing sensitive

features is insufficient; other techniques have to be adopted

to correct the unfairness in data mining.

Fairness-aware classification is a classification problem of

learning a model that can make fairer prediction than normal

classifiers while sacrificing as little prediction accuracy as

possible. In this task, we assume that a true fair model

is a true model with constraints regarding fairness, and an

estimated fair model is learned from these constraints and a

data set generated from a true distribution.

For this task, Calders and Verwer developed the 2-naı̈ve-

Bayes method [2]. Both Y and S are binary variables, and

a generative model of the true distribution is

P̃[Y,X, S] = P̃[Y, S]
∏

i P̃[X
(i)|Y, S]. (3)

After training a normal estimated model, a fair estimated

model is acquired by modifying this estimated model so

that the resultant CV score approaches zero.

Kamiran et al. developed algorithms for learning decision

trees for a fairness-aware classification task [14]. When

choosing features to divide training examples at non-leaf

nodes of decision trees, their algorithms evaluate the in-

formation gain regarding sensitive information as well as

that about the target variable. Additionally, the labels at leaf

nodes are changed so as to decrease the CV score.

C. Explainability and Situation Testing

Žliobaitė et al. advocated a concept of explainablity [15].

They considered the case where even if a CV score is

positive, some extent of the positive score can be explained

based on the values of non-sensitive features. We introduce

their example of admittance to a university. Y=+ indicates

successful admittance, and protected status, S=−, indicates

that an applicant is female. There are two non-sensitive

features, X(p) and X(s), which represent a program and

a score, respectively. X(p) can take either medicine, med,

or computer science, sc. A generative model of a true

distribution is

P̃[Y, S,X(p), X(s)] =

P̃[Y |S,X(p), X(s)] P̃[X(p)|S] P̃[S] P̃[X(s)].

A med program is more competitive than a cs program.

However, more females apply to a med program while more

males apply to cs. Because females tend to apply to a more

competitive program, females are more frequently rejected,

and as a result, the CV score becomes positive. However,

such a positive score is explainable due to a legitimate cause

judged by experts, such as the difference in programs in this

example. Like this X(p), the explainable feature1 is a non-

1This is originally called an explanatory variable; we used the term
“explainable” in order to avoid confusion with a statistical term
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sensitive feature that is correlated with a sensitive feature

but expresses an explainable cause.

They advocated the following score to quantify the degree

of explainable unfairness:

∑
x(p)∈{med,cs}

(
P[x(p)|S=+]P[Y=+ |x(p), S=+]−

P[x(p)|S=−]P[Y=+ |x(p), S=−]
)
. (4)

This score is a weighted sample mean of CV scores that are

conditioned by an explainable feature. If all unfair treatments

are explainable, this score is equal to an original CV score

(equation (2)). They also proposed a method for a fairness-

aware classification task using resampling or relabeling.

Luong et al. implemented a concept of situation test-

ing [16]. A determination is considered unfair if different

determinations are made for two individuals, all of whose

legally-grounded features take the same values. The concept

of a legally-grounded feature is almost the same as that of

the above an explainable feature. They proposed a method

to detect unfair treatments while taking into account the

influence of legally-grounded features. Their method utilizes

the k-nearest neighbors of data, and can deal with non-

discrete features. Hajian and Domingo-Ferrer proposed a

rule generalization method [12]. To remove directly unfair

association rules, data satisfying unfair rules are modified

so that they satisfies the other rules whose consequents are

disadvantageous, but whose antecedents are explainable.

D. Differential Fairness

Dwork et al. argued for a framework of data publication

that would maintain fairness [17]. A data set is held by a data

owner and passed to a user who classifies the data. When

publishing, original data are transformed into a form called

an archetype, so that sensitive information will not influence

classification results. Utilities for data users are reflected by

referring to the loss function, which is passed to owners from

data users in advance. Because their concept of fairness is

considered as a generalized concept of differential privacy,

we here refer to this as differential fairness.

To be aware of fairness, the transformation to archetypes

satisfies two conditions: a Lipschitz condition and statistical

parity. A Lipschitz condition is intuitively a constraint that

a pair of data in the neighbor of the original space must be

mapped in the neighbor of the archetype space. Formally,

it is D(f(a), f(b)) ≤ d(a, b), ∀a, b, where f is a map from

the original data to archetypes, d is a metric in the original

space, and D is the distributional distance in the archetype

space. All data and protected data in the original space

are uniformly sampled, respectively, and these are mapped

into the archetype space. Two distributions are obtained

by this process; and statistical parity intuitively refers to

the coincidence of these two distributions. Formally, for a

positive constant ε, it is D(f(D), f(DS=−)) ≤ ε, where

DS=− consists of all protected data. If the loss function, the

family of maps f , and the distances d and D are all linear,

the computation of the map f becomes a linear programming

problem whose constraints are a Lipschitz condition and a

statistical property.

The following conditions are satisfied if a Lipschitz con-

dition and a statistical parity are satisfied (propositions 2.1

and 2.2 in [17]):∣∣∣P[g(f(a))=+]− P[g(f(b))=+]
∣∣∣ ≤ d(a, b), (5)∣∣∣P[g(f(a))= + |a ∈ DS=−]− P[g(f(a))=+]

∣∣∣ ≤ ε, (6)∣∣∣P[a ∈ DS=−|g(f(a))=+]− P[a ∈ DS=−]
∣∣∣ ≤ ε, (7)

where g is a binary classification function. Equation (5)

indicates that the more similar the data in the original space,

the more frequently they are classified into the same class.

Equation (6) means that classification results are independent

of membership in a protected group, and equation (7) means

that the membership in a protected group is not revealed by

classification results.

E. Prejudice

Kamishima et al. advocated a notion of prejudice as a

cause of unfair treatment [18]. Prejudice is a property of a

true distribution and is defined by statistical independence

among the target variable, a sensitive feature, and non-

sensitive features. Prejudice can be classified into three

types: direct prejudice, indirect prejudice, and latent prej-

udice.

The first type is direct prejudice, which is the use of a

sensitive feature in a true model. If a true distribution has a

direct prejudice, the target variable clearly depends on the

sensitive feature. To remove this type of prejudice, all that is

required is to simply eliminate the sensitive feature from the

true model. We then show the relation between this direct

prejudice and statistical dependence. A true fair distribution,

which is obtained by eliminating the sensitive variable, can

be written as

P̃†[Y,X, S] = M̃†[Y |X]P̃[X, S] = M̃†[Y |X]P̃[S|X]P̃[X].

This equation states that S and Y are conditionally inde-

pendent given X , i.e., Y ⊥⊥ S |X . Hence, we can say that a

direct prejudice is equivalent to the conditional independence

Y �⊥⊥ S |X .

The second type is indirect prejudice, which is the sta-

tistical dependence between a sensitive feature and a target

variable. Even if a true model lacks direct prejudice, the

model can have indirect prejudice, which can lead to unfair

treatment. We give a simple example. Consider the case that

all Y , X , and S are real scalar variables, and these variables

satisfy the equations:

Y = X + εY and S = X + εS ,
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where εY and εS are mutually independent random vari-

ables with 0 means. Because P̃[Y,X, S] is equal to

P̃[Y |X] Pr[S|X] Pr[X], these variables satisfy the condition

Y ⊥⊥ S |X , but do not satisfy the condition Y ⊥⊥ S. Hence,

this true model does not have direct prejudice, but does have

indirect prejudice. If the variances of εY and εS are small,

Y and S become highly correlated. In this case, even if

a model does not have direct prejudice, the target variable

clearly depends on a sensitive feature. The resultant unfair

treatment from such relations is referred to as a red-lining

effect. To remove this indirect prejudice, we must adopt a

true fair model that satisfies the condition Y ⊥⊥ S.

The third type of prejudice is latent prejudice, which

entails statistical dependence between a sensitive feature, S,

and non-sensitive features, X. Consider an example of real

scholar variables that satisfy the equations:

Y = X1 + εY , X = X1 +X2, and S = X2 + εS ,

where εY ⊥⊥ εS and X1 ⊥⊥ X2. Clearly, the conditions

Y ⊥⊥ S |X and Y ⊥⊥ S are satisfied, but X and S are

not mutually independent. This dependence doesn’t cause

the sensitive information to influence a target variable, but

it would be exploited in the analysis process; thus, this

might violate some regulations or laws. Removal of this

latent prejudice is achieved by making X and Y jointly

independent from S simultaneously.

Kamishima et al. advocated a regularization term, prej-
udice remover, which is mutual information between Y
and S over an estimated fair distribution [18]. To solve a

fairness-aware classification task, logistic regression models

are made for each value of S and these are combined with

the prejudice remover. This prejudice remover is used for

making information neutral recommendations, too [8]

V. DISCUSSION ON RELATIONS AMONG CONCEPTS AND

METHODS OF FAIRNESS

Here we discuss the relations among the concepts and

methods of fairness in the previous section. To reflect the

concepts of the explainability in section IV-C, we divide

non-sensitive features into two groups. The one is a group

of explainable features, X(E). Even if explainable features

are correlated with a sensitive feature and diffuse sensitive

information to a target variable, the resultant dependency

of a target variable on a sensitive feature is not considered

as unfair according to the judgments of experts. All non-

sensitive features other than explainable features are unex-
plainable features, which are denoted by X(U).

We first discuss α-protection with α = 1 in section IV-A.

If a rule is α-protective with α = 1, the rule can be

considered as ideally fair. Further, α-protection becomes

strong α-protection if α = 1, and the following equations

can be directly derived from the conditions in terms of

confidence:

P[Y=− |X=x, S=−] = P[Y=− |X=x],

P[Y=+ |X=x, S=−] = P[Y=+ |X=x].

These conditions induce the independences, S ⊥⊥ Y |X = x.

When no direct discrimination is observed, conditions

S ⊥⊥ Y |X = x are satisfied for all conditions in terms

of non-sensitive features, X = x, observed in available

association rules. This fact indicates that the conditional

independence Y ⊥⊥ S |X is satisfied over a sample distri-

bution.

Next, we move on to the CV score in section IV-B.

When both Y and S are binary variables and the CV

score (equation (2)) is exactly 0, it is easy to prove the

independence between Y and S. A CV score is hence

regarded as an evaluation index of the independence Y ⊥⊥
S.

We next discuss the explainability and situation testing in

section IV-C. The degree of explainable unfairness (equa-

tion (4)) is comprised of the CV score conditioned by X(E).

This is equivalent to measuring the degree of the conditional

independence Y ⊥⊥ S |X(E). Regarding situation testing,

it checks the difference of distributions of Y conditioned

by S when all explainable features, X(E), take the same

values. This is also equivalent to checking the conditional

independence, Y ⊥⊥ S |X(E).

Concerning the differential fairness, equations (6) and

(7) respectively imply that P[Y= + |S=−] = P[Y=+]
and P[S= − |Y=+] = P[S=−] approximately hold in the

archetype space. When both Y and S are binary variables,

the satisfaction of these equations are equivalent to the

independence Y ⊥⊥ S.

We finally introduce the concepts of the explainability

to the notions of prejudice in section IV-E. The notions

of prejudice are modified so that any variable and feature

can always depend on the explainable features. Original

prejudice can be modified into explainable prejudice as

follows:

Original Explainable

Direct : Y �⊥⊥ S |X Y �⊥⊥ S |X
Indirect : Y �⊥⊥ S Y �⊥⊥ S |X(E)

Latent : Y �⊥⊥ X Y �⊥⊥ X(U)

Holding direct α-protection (α = 1) is equivalent to direct

prejudice, holding indirect α-protection with (α = 1), 0

CV score, and differential fairness are equivalent to indirect

prejudice, and conditional discrimination or situation testing

are related to explainable indirect prejudice.

VI. RELATIONS WITH OTHER RESEARCH TOPICS

Here we discuss that relation of fairness-aware data min-

ing with other research topics.
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A. Privacy-Preserving Data Mining

Fairness-aware data mining is closely related to privacy-

preserving data mining [19], which is a technology for min-

ing useful information without exposing individual private

records. The privacy protection level is quantified by mutual

information between the public and private realms [19,

chapter 4]. As described in section V, almost all the fairness

indexes concern the dependency between Y and S, and the

dependence can be evaluated by the mutual information. Due

to the similarity of these two uses of mutual information, the

design goal of fairness-aware data mining can be considered

the protection of sensitive information when exposing clas-

sification results.

We proposed an index, normalized mutual information, to

measure the degree of indirect prejudice [18]:

NPI = I(Y ;S)√
H(Y )H(S)

=
√

I(Y ;S)
H(Y )

I(Y ;S)
H(S) ,

where I(·; ·) and H(·) are respectively mutual information

and entropy function over sample distributions. The first

factor, I(Y ; S)/H(Y ), is the ratio of information of S used

for predicting Y ; thus, it can be interpreted as the degree

of unfairness. The second factor, I(Y ; S)/H(S), is the ratio

of information of S that is exposed when a value of Y is

known; thus, it can be interpreted as the exposed privacy.

If I(Y ; S) is reduced, these two factors can be decreased,

indicating that fairness and privacy preservation can be

enhanced simultaneously.

Other concepts for privacy-preservation can be exploited

for the purpose of maintaining fairness. Relations between

concepts of differential privacy [19, chapter 16] and differ-

ential fairness are discussed in [17]. A query function can be

applied to a pair of private data that are close in the private

data space, from which a pair of distributions of query

results is obtained; differential privacy holds if these two

distributions are very close. We can find an analogy between

the relation of the private data and the query results in

differential privacy and the relation of the original data and

the archetypes in differential fairness. Differential privacy is

considered a special case of differential fairness whose loss

function represents the distortion of query results.

On the other hand, fairness and privacy-preservation are

different in some points. In the case of fairness, the exposure

of identity is occasionally not problematic, because the iden-

tity is already exposed in a credit or employment application

case. The use of a random transformation is allowed for

privacy-preservation, but it is occasionally problematic in the

case of fairness. For example, if employment or admissions

are determined randomly, it becomes difficult to explain the

reason for rejection to applicants.

B. Causal Inference

Premises of causal inference theories are different from

those of fairness-aware data mining in a sense that the

structures of causal dependency are given or not. However,

when discussing the causal relation between target variables

and sensitive features, theories of causal inference would

give us useful insights. To show the relation between issues

involved in both causality and fairness, we briefly introduce

causal inference. Note that the theorems, definitions, and

their numbers were obtained from a textbook [20]. We

already know the joint sample distribution of Y and S.

We are concerned about the probability that unprotected

and advantageous individuals, Y=+, S=+, would get dis-

advantageous determination if they are assumed to be in a

protected group, S=−. Such an event that did not actually

occur is called counterfactual and is denoted by S= −
>Y=−.

(Definition 9.2.1) The probability of necessity is defined as

PN = Pr[S=− > Y=− |S=+, Y=+].

(Definition 9.2.2) The probability of sufficiency is defined as

PS = Pr[S=+ > Y=+ |S=−, Y=−].
(Definition 9.2.3, Lemma 9.2.6) The probability of necessity
and sufficiency is defined as

PNS = Pr[S=− > Y=−, S=+ > Y=+]

= P[S=+, Y=+]PN + P[S=−, Y=−]PS.
(Definition 9.2.9) A variable Y is said to be exogenous
relative to S if and only if the way Y would potentially

respond to conditions S=+ and S=− is independent of the

actual value of S.

(Theorem 9.2.10) Under condition of exogeneity, PNS is

bounded as follows:

max[0,P[Y=+ |S=+]− P[Y=+ |S=−]] ≤ PNS

≤ min[P[Y=+ |X=+],P[Y=− |X=−]].
The lower bound of equation in theorem 9.2.10 is equiv-

alent to a CV score (equation (2)). That is to say, the CV

score corresponds to the lower bound of the probability that

S is a cause of Y . The theory of causality has a relation to

fairness in this manner; more investigation along this line is

required.

C. Other Related Topics

Fairness-aware data mining is a kind of cost-sensitive

learning whose cost is the enhancement of fairness [21].

Different from the traditional cost-sensitive learning, costs

are not uniform over all individuals and change depending

on sensitive features. Fairness in data mining can also be

interpreted as a sub-notion of legitimacy, which means that

models can be deployed in the real world [22]. Independent

component analysis might be used to maintain the indepen-

dence between features to enhance the fairness [23].
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VII. CONCLUSION

Research on fairness-aware data mining is just beginning.

Below is a list of some objectives for further research in this

field:

• Further variations of fairness concepts

• New formal tasks taking into account issues of fairness

• New fairness-aware algorithms for data analysis

• A theory of the trade-off between fairness and utility

• Further elaboration of relations with topics such as

privacy or causality

The use of data mining technologies in our society will

only become greater and greater. Data analysis is crucial

for enhancing public welfare. For example, personal in-

formation has proved to be valuable in efforts to reduce

energy consumption, improve the efficiency of traffic con-

trol, prevent risks of infectious diseases, crimes, disasters,

and so on. Unfortunately, data mining technologies can

reinforce prejudice around sensitive features and otherwise

damage people’s lives [24]. Consequently, methods of data

exploitation that do not damage people’s lives, such as

fairness-aware data mining, privacy-preserving data mining,

or adversarial learning, together comprise the notion of

socially responsible data mining, which should become an

important concept in the near future.
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