Prediction with Model-based Neutrality

Kazuto Fukuchi^{*1}, Jun Sakuma^{*1}, Toshihiro Kamishima^{*2} *1 Dept. of Computer Science, Graduate school of SIE, University of Tsukuba *2 National Institute of Advanced Industrial Science and Technology (AIST)

ECML PKDD 2013

Discrimination in Prediction

If the predictions are highly dependent on the sensitive attribute, the predictions might be discriminatory.

Predictions have a significant impact on our lives.
E.g. hiring-decision, insurance rate, credit administration
Discrimination caused by highly dependent on the sensitive attributes

Sensitive attributes: gender, race, ethnicity

Discrimination must not be

Iose your credit

be a violation of the law

Red-lining Effect [Calders 10]

Elimination of the sensitive attributes does not reduce discrimination.

Indirect effects are remaining If X is highly dependent on V, Y is dependent on V through X.

X: input variable (age, career, address)Y: output variable (hiring-decision)V: viewpoint variable (race, gender)

To ensure the fairness, we need aggressive way.

Effect from hidden attributes

Hidden viewpoint variable (sensitive attributes) causes discrimination if they are predictable.

If V are predictable from X, X and V are highly correlated

Correlationship between X and V causes discriminatory

Not observable

Х

Assume: If viewpoint variable is predictable, we could obtain the predictive model of the viewpoint variable Ensure the neutrality of the model

Model-based neutrality could treat hidden viewpoint variable.

This presentation:

- Consider neutrality of the model
- Maximum Likelihood Estimation with neutrality
- Evaluate the performance

Fairness/Discrimination-aware Data Mining

CV2NB [Calders 10]

■ Evaluate fairness with CV Score $Pr(y_+|v_+) - Pr(y_+|v_-)$

Modified parameters after learning with Naïve Bayes

Prejudice Remover [Kamishima 12a]

• Evaluate fairness with prejudice(mutal information) PI = I(Y; V)

Reduce discrimination with regularizer

Both of these methods assume the value of the viewpoint variable is explicitly provided.

Hidden effects are not considered in this works

Problem settings

Define two predictive models: $f(Y|X;\Theta)$, g(V|X)

f(Y|X;θ) : the model of the output variable
g(V|X) : the model of the viewpoint variable g(V|X) is given

Maximum likelihood estimation with neutralization max L(θ) subject to f(Y|X; θ) is neutral from g(V|X)
L(θ): log likelihood

Х

η -Neutral

Neutrality between two models

$$\begin{split} &\eta - \text{Neutral} \\ &\text{Given } \eta \geq 0, \text{ the probability distribution} \\ &\text{Pr}(X,Y,V) \text{ is } \eta - \text{neutral if} \\ &\forall y \in \mathcal{Y}, v \in \mathcal{V}, \frac{\Pr(y,v)}{\Pr(y)\Pr(v)} \leq 1 + \eta. \end{split}$$

Defined by dependency between *Y*, *V* If *Y*, *V* is independent $\frac{\Pr(y,v)}{\Pr(y)\Pr(v)} = 1$ Evaluate most dependent pair of the Y, V

η -Neutral Model

Condition of the two models is η -neutral:

Condition of the η -Neutral Model $M(X, Y, V) = \Pr(X) f(Y|X; \theta)g(V|X)$ is η -neutral if $\int_{x \in \mathcal{X}} \Pr(x) f(y|x; \theta) (g(v|x) - (1 + \eta)\overline{g}(v)) dx \le 0.$

Pr(x) cannot be obtain \Rightarrow

Approximate with the frequency distribution (Empirical η -neutral)

Condition of the Empirical η -Neutral

$$N_{\eta}(y,v) = \sum_{x \in \mathcal{D}} f(y|x;\theta) \big(g(v|x) - (1+\eta)\bar{g}(v) \big) \le 0$$

η-Neutral Maximum Likelihood Estimation

Maximum likelihood estimation with empirical η neutrality constraints

> $\min_{\theta} L(\theta)$ s.t. $N_{\eta}(y, v) \leq 0 \ \forall y \in \mathcal{Y}, v \in \mathcal{V}$

 $L(\theta)$: Negative log likelihood $N_{\eta}(y,v)$: Empirical η -neutrality

In experiments, we use following two models:

Logistic Regression

Linear Regression

Unfortunately, the constraints are not convex Convexifying is future work

Any model of output variable $f(Y|X;\theta)$ can be used

Settings: Classification

	Case 1			Case 2		
	learning	neutrality	evaluate	learning	neutrality	evaluate
Existing methods	x, v	υ	ŷ, v	X, Û	$\widehat{\mathcal{V}}$	ŷ, v
proposal	x, v	g(v x)	ŷ, v	X	g(v x)	ŷ, v

learning : training input data neutrality : data of ensuring the neutrality evaluate : data of calculating the indexes

 \hat{y}, \hat{v} is estimated $\hat{y} = \arg\min_{y} f(y|x; \theta), \hat{v} = \arg\min_{v} g(v|x)$

Case 1 : Given the viewpoint variables Case 2 : Given only the model of the viewpoint variable

notion)In Case 2, existing methods use estimated value \hat{v} in learning, but true value v in evaluation.

CV2NB achieves good performance

- PR cannot achieve lower neutrality
- VN achieves good trade off rate, though worse CV2NB
- Enable to control trade off by parameter η

- VN achieves good performance
- Enable to control trade off by parameter η

Settings: Regression

- Dataset: Housing dataset (UCI Repository)
 - Input: 12 attributes
 - Output: MEDV (median value of owner-occupied homes, in \$1000s)
 - Viewpoint: LSTAT (% lower status of the population)
- Evaluation

Accuracy: root-mean-square error (RMSE) Neutrality: η

Result: Regression

Good accuracy, if plots arrange on the diagonal line

- To ensure high neutrality, the output is a constant value
- Enable to control trade off by parameter η

Conclusion & Future Works

We propose a framework for learning probabilistic model with model-based neutralization.

Contribution

- Neutrality of the probabilistic model
- Maximum likelihood estimate with η -neutral constraint
- Experimental results show our method achieves neutralization even when only a model is provided

Future Works

• To convexify η -neutral constraint