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Introduction
 Long-term process of medical treatments for chronicle 

diseases can be considered as interactions between 
patients and doctors

 We are exploing a MDP to model the long term 
interaction processes of disease treatment
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 Using the estimated MDP, we can
 Predict progression of treatments
 Evaluate value of patient's states
 Evaluate value of doctor's actions

 Related Work
 Optimal timing of living-donor liver transplantation 

[Alagoz+ 2004]
 Optimal time to initiate HIV therapy [Shechter+ 2008]
 Modeling treatment process of ischemic heart 

disease [Haskrecht+ 2000]
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Introduction

We focus on the process of controlling 
blood glucose level for type 2 Diabetes 
patients
Large social impact
 8.3% of the U.S. population (2011)
 11.6% of the total health care expenditure 

in the world for 2030
Lead to very serious complications

including heart diseases



Data
Records of patients cared at the University of 

Tokyo Hospital for their heart diseases 
(around 3,000 patients)

We extracted patients with periodical visits
 Interval between visits was more than 

15 days and less than 75 days  (around 1 month)
Longer than 24 visits 

 801 patients were extracted
Minimum length: 25 visits (around 2 years)
Maximum length: 124 visits (over 10 years)



Data
 State: value of Hemogrobin-A1c (HbA1c)

 Action: pharmaceutical treatments
 Alpha-Glucosidase Inhibitor (ߙGI)
 Biganaides (BG)
 DPP4 Inhibitor (DPP4)
 Insulin (Ins)
 Rapid-Acting Insulin Secretagogue (RapidIns)
 Sulfonyurea (SU)
 Thiazolidinedion (TDZ)

7 types of drug
38 combination patterns
e.g.  ߙGI+DPP4+SU



Data

 Reward: No reward value in the data
 We assumed a simple reward: e.g.
 if  state == "normal" reward = 1 

else reward = 0

 Example of an episode



State Values and Action Values
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 Estimate MDP parameters using Data
 Evaluate state/action values [Asoh+ 2013]



Issue
Reward values are not in the data
We assumed simple reward function based on

the purpose of the analysis

Question: What kind of reward the doctors have 
in their mind ?

 Applying IRL to the medical records



Algorithms of IRL

Linear programing [Ng+ 2000]
Quadratic programing [Abbeel+ 2004] 
Bayesian IRL [Ramachandran+ 2007]
Extension of the Bayesian IRL

[Rothkopf+ 2011]



Bayesian IRL [Ramachandran+ 2007] 

Known MDP environment
Finite discrete state space
Reward depends only on state
Reward function R is represented as a vector

Probabilistic generative model of 
experts' behavior (state-action pairs)
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Bayesian IRL

A sequential observation of experts' 
behaviours
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Posterior probability of reward vector
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Bayesian IRL

MCMC Sampling from the posterior 
distribution or reward vector
Policy Walk algorithm
Combining Policy Iteration for MDP and 

Metropolis-Hastings Algorithm

 ௡௢௥௠௔௟ ௠௘ௗ௜௨௠ ௦௘௩௘௥௘
௡௢௥௠௔௟ ௠௘ௗ௜௨௠ ௦௘௩௘௥



Result

Rmedium



Discussion
Converged to R*=(0.01, 0.98, 0.01)

 Possible causes of the counter-intuitive result
Many of the patients were already in the “medium” 

state when they came to the hospital

 keeping the patients’ state at “medium” may be 
the best-effort  target of doctors.

R (0.98, 0.01, 0.01) (0.01, 0.98,0.01) (0.01,0.01,0.98)

Log-likelihood -159878 -143568 -162928

State normal medium severe

Rel. Frequency 0.178 0.65 0.172



Discussion

Other possible causes of the counter-intuitive 
result
the MDP model is too simple to model the 

decision-making process of doctors
assuming that the reward value depending 

only on the current state is too simple
heterogeneity of doctors and patients is not 

properly considered



Discussion
Comparison between 
the doctors' policy and 
the optimal policy under the estimated 

reward value R*

State normal medium severe
Optimal policy
under R*

BG+SU αGI+BG+SU
+TDZ

DPP4

Doctors' policy SU SU SU

αGI BG+SU BG+SU

TDZ αGI BG



Summary
 The process of medical treatment for diabetes 

was modeled with a MDP

 A Bayesian IRL algorithm was applied to the 
MDP environment

 The result was counter-intuitive
Reward for “medium” state of patient is high



Future Study
Detailed validation of the result
Using different algorithms
Using different state representations

More complex decision-making model
may be necessary
 Introducing medical knowledge regarding

pharmaceutical treatments
Consulting guidelines for treatment
Detailed modeling of physicians’ therapeutic 

decisions [Toussi+ 2009]



Thank you, and
we would like to learn more

from your “non numeric” feedbacks!


