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Prediction with Model-Based Neutrality

Kazuto FUKUCHI†a), Nonmember, Toshihiro KAMISHIMA††, and Jun SAKUMA†, Members

SUMMARY With recent developments in machine learning technol-
ogy, the predictions by systems incorporating machine learning can now
have a significant impact on the lives and activities of individuals. In some
cases, predictions made by machine learning can result unexpectedly in
unfair treatments to individuals. For example, if the results are highly de-
pendent on personal attributes, such as gender or ethnicity, hiring decisions
might be discriminatory. This paper investigates the neutralization of a
probabilistic model with respect to another probabilistic model, referred to
as a viewpoint. We present a novel definition of neutrality for probabilis-
tic models, η-neutrality, and introduce a systematic method that uses the
maximum likelihood estimation to enforce the neutrality of a prediction
model. Our method can be applied to various machine learning algorithms,
as demonstrated by η-neutral logistic regression and η-neutral linear regres-
sion.
key words: neutrality, fairness, discrimination, logistic regression, linear
regression, classification, regression, social responsibility

1. Introduction

With recent developments in machine learning technology,
the resulting predictions can now have a significant impact
on the lives and activities of individuals. In some cases,
there are safeguards in place so that the predictions do not
cause unfair treatment, discrimination, or biased views of
individuals [1]. The following two examples describe situ-
ations in which predictions made by machine learning can
cause unfair treatment.

Example 1 (hiring decision) A company collects per-
sonal information from employees and job applicants; this
information includes age, gender, race or ethnicity, place of
residence, and work experience. The company uses machine
learning to predict the work performance of the applicants,
using information collected from employees. The hiring de-
cision is then based on this prediction.

Example 2 (personalized advertisement and recom-
mendation) A company that provides web services records
user behavior, including usage history and search logs, and
uses machine learning to predict user attributes and prefer-
ences. The advertisements or recommendations displayed
on web pages are thus personalized so that they match the
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predicted user attributes and preferences.
In the hiring-decision example, if the results are highly

dependent on personal attributes, such as gender or ethnic-
ity, hiring decisions might be deemed discriminatory. In the
second example, when recommendations are accurately pin-
pointed to sensitive issues, such as political or religious af-
filiation, the result may be increasingly biased views. This
is known as the problem of the filter bubble [2]. For exam-
ple, suppose supporters of the Democratic Party wish to read
news articles related to politics. If the recommended articles
are all related to their party and are absent of criticism, they
may develop a biased view of the political situation. In the
web-service example, showing advertisements that suit the
user’s attributes, such as gender or age, would improve the
service for some users. Other users, however, may object to
advertisements that are apparently based on their race, eth-
nicity, or gender. Thus, it is difficult to clearly distinguish
personalization from discrimination.

We now introduce some terms that will be useful in the
following discussion. The input and output of a prediction
model are referred to as input variables (e.g., race, ethnicity,
or web-usage history) and target variables (hiring decisions
or website recommendations). Factors that might result in
discrimination or bias are referred to as viewpoint variables
(e.g., race, ethnicity, or political affiliation).

The objective of machine learning is to learn prediction
functions that predict target variables from given examples.
In the example above, if the viewpoint variables (e.g., race
or ethnicity) are dependent on the predicted target variables
(e.g., hiring decisions), the prediction function causes unfair
treatment. In this paper, we introduce a systematic way to
remove this dependency from prediction models and neu-
tralize them with respect to a given viewpoint.

1.1 Related Works

Several techniques that take account of fairness or discrim-
ination have recently received attention [5], [7]–[9]. One of
the easiest ways to suppress unfair treatment is to remove
the values of the viewpoint from the input values before the
learning process with the prediction model. If there is no
correlation between the input and viewpoint variables, no
discrimination or bias will appear after elimination. How-
ever, if another input variable is dependent on the viewpoint
variable, then even after the viewpoint values are eliminated,
the target variable will retain dependency on the viewpoint
variable (Table 1, line 1). For example, assume that the
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Table 1 Summary of learning algorithms with neutrality guarantee.

method neutrality domain domain model of
guarantee of target of viewpoint viewpoint

elimination of viewpoint variable no guarantee any any ×
CV2NB [3] CV Score multiple multiple ×

PR [4] mutual information any multiple ×
Lipschitz property [5] statistical parity multiple multiple ×

LFR [6] statistical parity multiple multiple ×
η-neutral logistic regression (proposal) η-neutrality multiple multiple

√
η-neutral linear regression (proposal) η-neutrality continuous continuous

√

race or ethnicity attribute is eliminated in Example 1. Even
so, hiring decisions may be dependent on race or ethnic-
ity if there is a correlation between individuals’ addresses
and their race or ethnicity; this is known as the redlining
effect [3], [10].

Calders et al. presented the Calders–Verwer 2 Naive
Bayes method (CV2NB), which proactively removes the
redlining effect [3]. Let y ∈ {y+, y−} be the binary tar-
get variable, and let v ∈ {v+, v−} be the binary viewpoint
variable. Then, the Calders–Verwer (CV) score is defined
by CV(D) = Pr (y+|v+) − Pr (y+|v−). The CV2NB modi-
fies the näive Bayes classifier in such a way that the CV
score becomes zero with respect to the given examples D.
The CV2NB guarantees the elimination of discrimination in
terms of the CV score. The limitation of the CV2NB is that
it cannot be used when the target or viewpoint variables are
continuous (Table 1, line 2). Related to the CV2NB, it has
been shown [11] that positive CV scores do not necessar-
ily cause discrimination in some situations. There is also a
method [12] that uses the kth-nearest neighbor to test for the
existence of discrimination. Both these methods are based
on the CV2NB, so they share its limitations.

Kamishima et al. introduced the prejudice remover reg-
ularizer (PR) for fairness-aware classification [4]. The PR
regularizer penalizes the objective function if there is a high
correlation between the target variable and the viewpoint
variable. The penalty, which is called as the prejudice in-
dex, is evaluated based on the information that is shared
by the target variable y and the viewpoint variable v. This
penalty function can work with a continuous target vari-
able if it is approximated by a histogram, as demonstrated
by Kamishima et al. [13], [14]. Continuous viewpoint vari-
ables, however, cannot be treated by the PR method (Ta-
ble 1, line 3).

Dwork et al. presented a classification method that uses
a fairness-aware framework, in which statistical parity is
used as the measure of fairness [5]. Intuitively, statistical
parity occurs when the demographics of those receiving pos-
itive (or negative) classifications are identical to the demo-
graphics of the population as a whole. In their fairness-
aware framework, the classification is made to be fair by
minimizing the empirical risk while satisfying certain con-
straints that are called the Lipschitz property†. As is the case
with the CV2NB and PR methods, this framework assumes

†Lipschitz property differs to commonly known Lipschitz con-
tinuity

that the viewpoint variables are binary or multiple; contin-
uous viewpoint variables are not considered (Table 1, line
4).

Zemel et al. proposed learning fair representa-
tion (LFR), aiming to obtain an intermediate representation
which encodes the given data while simultaneously remov-
ing any information about the viewpoint variable. The fair-
ness of LFR is based on statistical parity, and that leads
the limitation for use of continuous viewpoint variables (Ta-
ble 1, line 5).

1.2 Our Contribution

Modeling viewpoint variables. In this manuscript, we pro-
vide a method to neutralize the target prediction model with
respect to a probabilistic model of a given viewpoint. Ex-
isting methods assume the viewpoint is observed and is ex-
plicitly provided in the input, but this is not always the case.
For instance, consider the recommendation of articles neu-
tralized with respect to political affiliation, as in Example 2.
Political affiliation is not explicitly included in the input, but
given as input the logs of keyword searches or subscribed
news articles, modern machine learning techniques can eas-
ily predict party affiliation. In such a case, our method neu-
tralizes the target prediction model with respect to the prob-
ability model of such a “hidden viewpoint”.

In order to neutralize a model with respect to a view-
point, we represent the viewpoint as a probabilistic model
and define η-neutrality (Sect. 2), which is a measure of the
dependency of the target prediction model on the viewpoint
prediction model. With η-neutrality, we can check the neu-
trality of a target prediction model with respect to any hid-
den viewpoint, as long as we have a probabilistic model
of the viewpoint variable (Table 1, the rightmost column).
Furthermore, since η-neutrality is measured with respect to
probabilistic models, the neutrality of the prediction model
with respect to unseen examples is expected to be effec-
tively guaranteed, and this is demonstrated by experiments
(Sect. 5).

Maximum likelihood estimation with η-neutrality.
Following the definition of η-neutrality, we introduce a sys-
tematic method that removes this dependency from the pre-
diction model obtained by the maximum likelihood estima-
tion (Sect. 2). Our methods can treat target and viewpoint
variables that are either discrete (Table 1, line 5) or con-
tinuous (Table 1, line 6), as demonstrated by η-neutrality
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Fig. 1 Relationship between the neutrality measures. Statistical parity
with binary viewpoint is equivalent to CV score. η-neutrality upper bounds
all of other neutrality measures.

with logistic regression (Sect. 3.1) and linear regression
(Sect. 3.2). The effectiveness of our methods is examined
by both artificial and real datasets in Sect. 5.

Comparison of neutrality measures.
We clarify the relationship between the existing neu-

trality measures, η-neutrality, the CV Score [3], statistical
parity [5] and the prejudice index [4]. For comprehensive
discussion, we introduce a neutrality factor (Sect. 4), which
represents neutrality of a pair of a target value and viewpoint
value. We show that existing neutrality measures are univer-
sally represented by aggregation of the neutrality factors.

In Fig. 1, we illustrate the relationship between the neu-
trality measures. The dashed arrow between statistical par-
ity and the CV score shows that statistical parity with bi-
nary viewpoint is equivalent to CV score. Furthermore, η-
neutrality is interpreted as an upper-bound of the other neu-
trality measures represented by the solid arrows. We will
prove these relations in Sect. 4.

2. η-Neutrality

We propose a novel definition of neutrality, η-neutrality.
We then present a general maximum likelihood estimation
method that has a guarantee of neutrality.

2.1 Problem Setting: Maximum Likelihood Estimation

Let D = {(xi, yi) ∈ X × Y}Ni=1 be a set of training examples
that are assumed to be i.i.d. samples drawn from a probabil-
ity distribution Pr (X,Y). The random variables X and Y are
referred to as the input and target, respectively. The real-
ized values of the variables are denoted by the correspond-
ing lowercase letters. Thus, the random variable X can take
the value x. In the following discussion, we assume the in-
put random variable X is continuous. We can treat a discrete
X by replacing the integral with a sum. For Y , the discus-
sion below is valid for both discrete and continuous vari-
ables. Besides, the prediction function of the target variable
is represented as a probabilistic model f (Y |X; θ) = Pr (Y |X),
parametrized by θ. The target prediction model can be ob-
tained by minimization of the negative log-likelihood with
respect to the parameter θ:

θ∗ = argminθ∈ΘL(θ),

where

L(θ) = −
∑

(xi,yi)∈D
ln f (yi|xi; θ). (1)

2.2 Definition of η-Neutrality

In addition to the input random variable X and the target
random variable Y , we now introduce the viewpoint random
variable V . LetV be the domain of V . As is the case with Y ,
the discussion below with respect to V is also valid for both
discrete and continuous variables. As we did for the target
random variable, we assume that the prediction model of
the viewpoint variable is represented as a conditional prob-
ability Pr (V |X). Noting that the values of the target and the
viewpoint variables are predicted independently, we assume
the joint probability is

Pr (X,Y,V) = Pr (X) Pr (Y |X) Pr (V |X) .

With this assumption, we consider the dependency of the
target random variable Y and the viewpoint random vari-
able V . When V and Y are statistically independent, for
any y ∈ Y and v ∈ V, Pr (v, y) /Pr (v) Pr (y) = 1. When
Pr (v, y) /Pr (v) Pr (y) > 1, v and y are more dependent than
independent. Hence, our neutrality definition is defined as
the ratio of the marginal probabilities, as follows.

Definition 1 (η-neutrality). Let X and Y be the input and
target random variables, respectively. Let V denote the
viewpoint random variable. Given η ≥ 0, the probability
distribution Pr (X,Y,V) is η-neutral if

∀v ∈ V, y ∈ Y, Pr (v, y)
Pr (v) Pr (y)

≤ 1 + η. (2)

Our neutrality definition simply bounds above the ratio.
As a variation of this definition, the ratio can be bounded
above and below as

∀v ∈ V, y ∈ Y, 1 − η ≤ Pr (v, y)
Pr (v) Pr (y)

≤ 1 + η. (3)

If both the target random variable and the viewpoint random
variable are binary, the ratio of our definition is bounded be-
low as Eq. (3). If either or both of the target random variable
and the viewpoint random variable take M multiple values,
the ratio of our definition is bounded below by 1−Mηwhich
is different from Eq. (3). We employed Definition 1 for opti-
mization efficiency. The number of constraints derived from
Definition 1 can be reduced to half compared to Eq. (3).

Next, given the probabilistic models of Pr (Y |X) and
Pr (V |X), we derive conditions that the model of the joint
probability distribution satisfies η-neutrality. The target and
the viewpoint prediction models are described by the prob-
ability distributions f (Y |X; θ) = Pr (Y |X) and g(V |X; φ) =
Pr (V |X), respectively, where θ and φ are the model param-
eters. Thus, given the target prediction model f (Y |X; θ) and
the viewpoint prediction model g(V |X; φ), the probabilistic
model of Pr (X,Y,V) becomes

M(X,Y,V; θ, φ) = f (Y |X; θ)g(V |X; φ)Pr (X) . (4)

In what follows, we assume the viewpoint prediction
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model is fixed, and so the model parameter φ is omitted and
g is described by g(V |X). The following theorem shows the
condition that the model of Eq. (4) is empirically η-neutral.

Theorem 1. Suppose the joint probability distribution of
input X, target Y, and viewpoint V follows the model
M(X,Y,V; θ) = Pr (X) f (Y |X; θ)g(V |X). Then M is η-neutral
if ∀v ∈ V, y ∈ Y,
∫

x
Pr (x) f (y|x; θ)

[
g(v|x) − (1 + η)ḡ(v)

]
dx ≤ 0, (5)

where ḡ(v) =
∫

x
Pr (x) g(v|x)dx.

Proof. By the marginalization of Pr (x, y, v) with respect to
x, (x, y), and (x, v), we have

Pr (y, v)=
∫

x
Pr (x, y, v) dx=

∫
x

Pr (x) f (y|x; θ)g(v|x)dx,

Pr (y)=
∫

x

∫
v

Pr (x, y, v) dvdx=
∫

x
Pr (x) f (y|x; θ)dx,

Pr (v)=
∫

x

∫
y

Pr (x, y, v) dydx=
∫

x
Pr (x) g(v|x)dx

=ḡ(v).

By substituting the above equations into Eq. (2), we
have

∀v, y,
∫

x
Pr (x) f (y|x; θ)g(v|x)dx

− (1 + η)ḡ(v)
∫

x
Pr (x) f (y|x; θ)dx ≤ 0,

∀v, y,
∫

x
Pr (x) f (y|x; θ)

[
g(v|x) − (1 + η)ḡ(v)

]
dx ≤ 0.

�

2.3 Approximation of η-Neutrality

When Pr (x) cannot be obtained, η-neutrality can be empir-
ically evaluated with respect to the frequency distribution
P̃r (x) of the examples D. The neutrality condition with re-
spect to this frequency distribution is derived in a similar
manner, as follows. Given examples D, we approximate η-
neutrality with respect to the frequency distribution

P̃r (X = x) =
1
N

N∑
i=1

I(xi = x),

where I(·) denotes the indicator function. From this, we
have

P̃r (X,Y,V) = P̃r (X) Pr (Y |X) Pr (V |X) ,

and an approximation of η-neutrality is defined by this
P̃r (X,Y,V).

Definition 2 (Empirical η-neutrality). Let X and Y be the

input and target random variables, respectively. Let V de-
note the viewpoint random variable. Let P̃r (X) be the fre-
quency distribution of X obtained from D. Given η ≥ 0, if
P̃r (X,Y,V) is η-neutral, Pr (X,Y,V) is said to be empirically
η-neutral with respect to the datasetD.

The following theorem shows the condition that the
model of Eq. (4) is η-neutral with respect to the given ex-
amples.

Theorem 2. Suppose the joint probability distribution of
the input X, target Y, and viewpoint V follows the model
M(X,Y,V; θ) = Pr (X) f (Y |X; θ)g(V |X). Then, given D =
{(xi, yi)}Ni=1, M is empirically η-neutral if

∀y, v,
N∑

i=1

f (y|xi; θ)
[
g(v|xi) − (1 + η)g̃(v)

] ≤ 0,

where g̃(v) = 1
N

∑N
i=1 g(v|xi).

Proof. Theorem 2 states that Pr (X,Y,V) is η-neutral if
Eq. (5) holds. By substituting P̃r (X) into Eq. (5), the neu-
trality condition is rewritten as

∀y, v, 1
N

N∑
i=1

f (y|xi)
[
g(v|xi) − (1 + η)g̃(v)

] ≤ 0.

�

For convenience in the following discussion, the neu-
trality condition is notated as

N(y, v) =
N∑

i=1

f (y|xi)
[
g(v|xi) − (1 + η)g̃(v)

] ≤ 0. (6)

2.4 Maximum Likelihood Estimation with η-Neutrality

Given examples and a viewpoint prediction model, we per-
formed maximum likelihood estimations with the guarantee
of η-neutrality. We wanted a target prediction model that
would achieve the maximum log-likelihood with respect to
the given data. At the same time, we wanted a target pre-
diction function that would make Pr (X,Y,V) empirically η-
neutral with respect to the given data and viewpoint pre-
diction model. This problem is the following constrained
optimization problem:

minimize L(θ) subject to N(y, v; θ) ≤ 0, ∀y, v.
Existing neutrality indexes measure neutrality with cer-

tain statistics, such as differences in the conditional proba-
bilities [3] or mutual information [4]. If such measures are
used to guarantee neutrality, the neutrality of the model is
statistically guaranteed for the set of given examples. In
principle, it is desirable to guarantee neutrality with respect
to each individual contained in the given examples. How-
ever, such prediction functions tend to overfit to the given
examples and do not provide neutrality of unseen examples.
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Assuming the model of the viewpoint correctly rep-
resents the true distribution, a model that satisfies our η-
neutrality condition guarantees statistical independency be-
tween every combination of target value y and viewpoint
value v. Note that η-neutrality can be realized even when
the viewpoint values are not contained in the given exam-
ples. This is because the evaluation of neutrality is not de-
pendent on the value of the viewpoint but the model of the
viewpoint.

2.5 Prediction Model for Viewpoints

In principle, we assume g(V |X) accurately represents the
true probabilistic distribution Pr (V |X), but in reality, this
does not always hold. In this subsection, we consider three
types of possible viewpoint models.

The first case assumes an extreme example; model
g(V |X) is the probabilistic model that outputs random or
constant values independent of input x. If we have no
knowledge of the viewpoint, we have no choice other than
this. Since g(V |X) takes a constant value independent of X,
η-neutrality is guaranteed for any f (Y |X; θ) in this model;
however, such neutralization is meaningless.

The second case assumes that model g(V |X) is taken as
the empirical distribution of the training examples. Exist-
ing methods, including CV2NB, statistical parity, and PR,
achieve neutralization with respect to this empirical distri-
bution. This model realizes neutralization with respect to
the given training examples, but neutralization with respect
to unseen examples is not guaranteed.

The third case considers the situation that is our focus;
model g(V |X) is given as a parametrized probabilistic model.
In this case, if g(V |X) accurately represent the true distribu-
tion without overfitting, the output of the target prediction
model is expected to be neutralized with respect not only to
the training examples, but also to the unseen examples; this
is demonstrated in the following sections by experiments.

The definition of η-neutrality contains all of the above
cases, but we specifically consider only the third case, the
parametric model.

3. Applications of Maximum Likelihood Estimation
with η-Neutrality

In this section, we demonstrate two applications of maxi-
mum likelihood estimation with a guarantee of empirical η-
neutrality: η-neutral logistic regression and η-neutral linear
regression.

3.1 η-Neutral Logistic Regression

We incorporate our neutrality definition into logistic regres-
sion. In logistic regression, the domain of the input variable
is X = Rd, and the domain of the target variable is binary,
Y = {0, 1}. Letting θ ∈ Rd be the model parameter, the
target prediction model for logistic regression is

f (y|x; θ) = σ(θT x)y(1 − σ(θT x))1−y, (7)

where σ(a) is the logistic sigmoid function.
Letting Eq. (7) be the target prediction model, the log-

likelihood is given by Eq. (1), and then the problem of η-
neutral logistic regression is

minimize L(θ) subject to N(y, v; θ) ≤ 0, ∀v, y.
Note that the viewpoint prediction model g(v|x) can be any
probabilistic model.

We consider the optimization of η-neutral logistic re-
gression. The gradient and Hessian matrix of L(θ) with re-
spect to θ are, respectively,

∇L(θ) =
N∑

i=1

(
σ(θT xi) − yi

)
xi,

∇2L(θ) =
N∑

i=1

σ(θT xi)(1 − σ(θT xi))xixT
i .

Due to the nature of the logistic sigmoid function, the
Hessian matrix is positive semidefinite. Hence, the log-
likelihood function is convex.

Next, we examine the convexity of the constraints as-
sociated with the η-neutrality condition. Since N(y, v; θ) is a
linear combination of f , the convexity of f is investigated.
The gradient of f with respect to the parameter θ is

∇ f (y, x; θ) =∇ exp (ln f (y|x; θ))

=
(
y − σ(θT x)

)
f (y|x; θ)x.

The Hessian is similarly obtained as

∇2 f (y|x; θ) = α(x, y, θ) f (y|x; θ)xxT ,

where α(x, y, θ) = 2σ(θT x)2 + y2 − (2y + 1)σ(θT x). Since
α(x, y, θ) ∈ R can be negative, the Hessian is not positive
definite, and f is nonconvex with respect to θ. Thus, un-
fortunately, the neutrality condition in logistic regression is
nonconvex, regardless of the choice of g(v|x).

In our experiments with η-neutral logistic regression,
we used the nonlinear optimization package, Ipopt, that pro-
vides the implementation of the primal-dual interior point
method [15]. As the initial point of the primal-dual interior
point method to solve the optimization problem of η-neutral
logistic regression, we use the optimal point of logistic re-
gression without neutralization. Although the constraint is
nonconvex, we show by experiments that η-neutrality can be
achieved without sacrificing too much of the accuracy of the
prediction in Sect. 5. This nonconvexity arises in part from
the nonconvexity of the probability distribution. Further re-
search on convexifying the neutrality constraint is left as an
area of future work.

3.2 η-Neutral Linear Regression

We now consider η-neutral linear regression and demon-
strate that maximum likelihood estimation with η-neutrality
can work with continuous viewpoint variables. In linear re-
gression, the domain of the target variable isY = R, and the
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input domain is X = Rd. The target prediction function is
given by

f (y|x;w, β) = β√
2π

exp
[
− β(wT x−y)2

2

]
, (8)

wherew denotes the regression coefficient for the target vari-
able and β denotes the parameter representing the inversed
variance of the prediction error of the target variable. The
linear regression problem is solved by the minimization of
the negative log-likelihood, as given by Eq. (1).

The domain of the viewpoint is V = R. Similarly, we
assume the viewpoint prediction model is

g(v|x;wv, βv) =
βv√
2π

exp
[
− β(wT

v x−v)2

2

]
, (9)

where wv denotes the regression coefficient for the view-
point variable and βv denotes the parameter representing the
inversed variance of the prediction error of the viewpoint
variable.

Predictions of the target random variable Y and the
viewpoint random variable V are obtained, respectively, by

ŷ = argmax
y

f (y|x;w, β), v̂ = argmax
v
g(v|x;wv, βv).

Then, η-neutral linear regression is formulated as
an optimization problem with the same constraints as in
Eq. (6):

minimize
1
2
wT XT Xw − yT Xw

subject to max
x∈D
{N(wT x,wT

v x;w, β)} ≤ 0,

where X = (xT
1 , x

T
2 , . . . , x

T
N)T is the design matrix and y =

(y1, y2, . . . , yN)T is the vector of target values.
As in the case with η-neutral logistic regression, we

investigate the convexity of the neutrality constraint given
models f and g by investigating the convexity of f . The
gradient and Hessian matrix of f are, respectively,

∇w f (wT x′|x;w, β)

=∇w exp(ln f (wT x′|x;w, β))

= − β(wT x − wT x′) f (wT x′|x;w, β)(x − x′),

∇2
w f (wT x′|x;w, β)

=α(x, x′,w, β)β f (wT x′|x;w, β)(x − x′)(x − x′)T ,

where α(x, x′,w, β) = β(wT x − wT x′)2 − 1. Since, depend-
ing on w, f (wT x′|x;w, β) ≥ 0 and α(x, x′,w, β) ∈ R can
take negative values, the Hessian is not positive definite.
Hence, unfortunately, f is not convex with respect to w.
For this non-convex constraint optimization, we again use
the primal-dual interior point method of Ipopt in our exper-
iments [15].

4. Comparison of Neutrality Measures

One of the largest difference between η-neutrality and

the CV score [3] or statistical parity [5] or the prejudice
index [4] is its situation; while the neutralization of η-
neutrality is based on the model of the viewpoint variable,
that of others is based on the value of the viewpoint vari-
able. In order to discuss the difference of these neutrality
measures, we assume the examples D contains the view-
point values in the subsequent subsections.

The CV score and the prejudice index are defined as
quantities that measures neutrality, whereas η-neutrality and
statistical parity are defined as conditions required for the
prediction model to be neutral. More precisely, for example,
the prediction model is said to be η-neutral only if the η-
neutrality of the prediction model is upper-bounded by η for
all y and v. We employ the upper bound of η-neutrality and
statistical parity as the neutrality measure for η-neutrality
and statistical parity, respectively.

For comprehensive discussion of the comparison of the
neutrality measures, we define the neutrality factor. We
introduced that can universally represent all the neutrality
measures. The neutrality factor denotes the neutrality with
respect to a specific pair of target value y and viewpoint
value v:

Definition 3 (Neutrality factor). Let X and Y be the input
and target random variables, respectively. Let V denote the
viewpoint random variable. Then, the neutrality factor with
respect to target y ∈ Y and viewpoint v ∈ V is defined by

ν(y, v) =
P̃r (y, v)

P̃r (y) P̃r (v)
.

From the definition of η-neutrality, we can say that η-
neutrality evaluates the maximum value of the neutrality
factors with respect to y and v. In subsequent subsections,
we represent the CV score, statistical parity and the preju-
dice index by using the neutrality factor. Furthermore, we
clarify the relationship between these neutrality measures.

4.1 Comparison of η-Neutrality, CV Score and Statistical
Parity

In this subsection, we first show that the CV score is a vari-
ant measure of statistical parity. Then, we derive the relation
between η-neutrality and statistical parity. In what follows,
we assume Y is the discrete target variable and V is the bi-
nary viewpoint variable.

Let y ∈ {y+, y−} and v ∈ {v+, v−} be the binary target
variable and the binary viewpoint variable, respectively. The
CV score [3] with respect to the given example set D is de-
fined by the difference of the conditional probability:

CV(D) = P̃r (y+|v+) − P̃r (y+|v−) , (10)

where P̃r (Y |V) is empirically evaluated with the given ex-
ample set D. We can assume P̃r (y+|v+) ≥ P̃r (y+|v−) with-
out loss of generality. If the CV score equals to zero, the
classification is empirically neutral with respect to the given
exampleD.
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Statistical parity [5] defines the neutrality considering
total variation of the two probabilistic distributions of target
y, P(y) and Q(y),

Dtv(P,Q) =
1
2

∑
y∈Y
|P(y) − Q(y)|. (11)

Given ε ≥ 0 as a neutrality parameter, we say ε-statistical
parity holds with respect to a given example setD if

Dtv(P̃r (Y |v+) , P̃r (Y |v−)) ≤ ε.
First, we show that the CV score is a variant measure

of statistical parity.

Lemma 1. Let Y and V be the binary target variable and
the binary viewpoint variable, respectively. For any ε ≥ 0
and example set D, CV(D) ≤ ε if and only if ε-statistical
parity with respect toD holds.

Proof. By the definition of statistical parity, if ε-statistical
parity holds

Dtv(P̃r (Y |v+) , P̃r (Y |v−)) ≤ ε.
By the definition of the probability, P̃r (y+|v) + P̃r (y−|v) =
1 ∀v ∈ V and we have

P̃r (y+|v+) − P̃r (y+|v−)

=(1 − P̃r (y−|v+)) − (1 − P̃r (y−|v−))

=P̃r (y−|v−) − P̃r (y−|v+) . (12)

By substituting Eq. (12) into Eq. (10), we have

CV(D)

=P̃r (y+|v+) − P̃r (y+|v−)

=
1
2

(P̃r (y+|v+) − P̃r (y+|v−) + P̃r (y−|v−) − P̃r (y−|v+))

We can assume P̃r (y+|v+) − P̃r (y+|v−) ≥ 0 and P̃r (y−|v−) −
P̃r (y−|v+) ≥ 0 without loss of generality. Hence, we have

CV(D) =
1
2

∑
y∈Y
|P̃r (y|v+) − P̃r (y|v−) |

=Dtv(P̃r (Y |v+) , P̃r (Y |v−)).

�

As proved by Lemma 1, the statistical parity with the
binary target variable can be interpreted as the CV score.

Next, we provide the relation between η-neutrality and
statistical parity. The following theorem shows that η-
statistical parity with respect to the given example set D
holds if η-neutrality holds.

Theorem 3. Let X and Y be the input variable and the dis-
crete target random variable, respectively. Let V denote
the binary viewpoint random variable. If the probability
Pr (X,Y,V) is empirically η-neutral, then Y is η-statistical

parity with respect to V.

In order to prove Theorem 3, we use the following
lemma that shows another representation of the total vari-
ation in statistical parity by using the neutrality factors.

Lemma 2. Let Dtv(P,Q) be total variation between P and
Q with respect to Y defined Eq. (11). Then,

Dtv(P̃r (Y |v+) , P̃r (Y |v−)) = EY

[
max
v∈{v+,v−}

ν(y, v)

]
− 1.

The proof of Lemma 2 is shown in the Appendix. As
proved by Lemma 2, statistical parity is the expectation of
the maximum value with respect to v of the neutrality fac-
tors. By using Lemma 2, we prove Theorem 3.

Proof of Theorem 3. If η-neutrality holds, ν(y, v) ≤ 1 +
η ∀y ∈ Y, v ∈ V. Then, we have

Dtv(P̃r (Y |v+) , P̃r (Y |v−)) ≤ EY
[
1 + η

] − 1 ≤ η.
�

As proved by the Theorem 3, statistical parity holds if
η-neutrality holds. We can immediately show that the CV
score is bounded by a certain function of η if η-neutrality
holds by using Theorem 3 and Lemma 1.

4.2 Comparison of η-Neutrality and Prejudice Index

In this subsection, we compare our η-neutrality with the
prejudice index [4]. The prejudice index is defined as the
mutual information of the target random variable Y and the
viewpoint random variable V:

PI = I(Y; V) = EY,V
[
ln ν(y, v)

]
,

where I(X; Y) is the mutual information of the target Y and
the viewpoint V .

While the prejudice index is the expectation of the log-
arithm of the neutrality factors ν(y, v), the neutrality param-
eter η of η-neutrality denotes the upper bound of the neutral-
ity factor ν(y, v). This indicates that prejudice index can be
upper bounded with the neutrality parameter η if η-neutrality
holds. Following proposition provides this indication.

Proposition 1. Let X and Y be the input and target ran-
dom variables, respectively. Let V denote the viewpoint ran-
dom variable. If the probability Pr (X,Y,V) is empirically
η-neutral with respect to givenD and η ≥ 0, then

I(V; Y) ≤ ln(1 + η).

Proof. From empirical η-neutrality of the probability
Pr (X,Y,V), we have

∀v ∈ V, y ∈ Y, P̃r (v, y)

P̃r (v) P̃r (y)
≤ 1 + η.

Since natural logarithm is a monotonically increasing func-
tion, we have



1510
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

Table 2 Summary of neutrality measures

Aggregation ν(y, v) ln ν(y, v)
Maximum w.r.t y and v η-neutrality equivalent to η-neutrality
Maximum w.r.t v and expectation w.r.t. y CV-score, statistical parity -
Expectation w.r.t y and v - prejudice index

Table 3 Specification of datasets for classification tasks. #Inst., #Attr., “Viewpoint” and “Target”
denote the number of example sets, the number of attributes, the attribute used as the target variable and
the attribute used as the viewpoint variable, respectively. #y+ and #v+ represent the number of positive
target and viewpoint values, respectively. The prediction accuracy of logistic regression for the target
variable (Acc (y)) and viewpoint variable (Acc (v)) are also shown.

dataset #Inst. #Attr. Viewpoint Target #y+ #v+ Acc (y) Acc (v)
Adult [18] 16281 13 gender income 3846 (23.6%) 10860 (66.7%) 0.850 0.842
Dutch Census [19] 60420 10 gender income 31657 (52.4%) 30273 (50.1%) 0.819 0.665
Bank Marketing [18] 45211 17 loan term deposit 5289 (11.7%) 7244 (16.0%) 0.900 0.839
Credit Approval [18] 690 15 A1 A16 307 (44.5%) 480 (69.6%) 0.875 0.676
German Credit Data [18] 1000 20 foreign worker credit risk 300 (30.0%) 37 (3.7%) 0.757 0.961

∀v ∈ V, y ∈ Y, ln
P̃r (v, y)

P̃r (v) P̃r (y)
≤ ln(1 + η). (13)

Expectation of Eq. (13) with respect to Y and V derives as
follows:

EY,V

[
ln

P̃r (V,Y)

P̃r (V) P̃r (Y)

]
= I(v; y) ≤ ln(1 + η).

�

As proved by the Proposition 1, the prejudice index is
upper bounded by ln(1 + η) if η-neutrality holds.

4.3 Summary of Comparisons

Table 2 shows the summary of the neutrality measures. By
definition of η-neutrality, η-neutrality is the maximum value
of the neutrality factors. Due to monotonicity of the log-
arithm function, η-neutrality is equivalent to the maximum
value of logarithm of the neutrality factors (Table 2, line 1).
Statistical parity can be represented as the expectation of the
maximum value with respect to v of the neutrality factors as
indicated by Lemma 2. Similarly, as indicated by Lemma 1,
the CV score is equivalent to statistical parity with binary
target variables (Table 2, left of line 2). The prejudice index
is defined as the expectation of logarithm of the neutrality
factor (Table 2, left of line 2).

As indicated by Theorem 3, statistical parity and the
CV score can be upper bounded by η-neutrality. Moreover,
as indicated by Theorem 1, the prejudice index can be upper
bounded by η-neutrality.

As shown in Table 2, all of the neutrality measures can
be represented with the neutrality factors. The difference of
these neutrality measures is only in the way of aggregation.

The prejudice index is defined by the mutual infor-
mation which represents statistical dependency between the
target random variable and the viewpoint random variable.
Thus, the neutrality measures are closely connected to the
measures of statistical dependency [16], [17].

5. Experiments

5.1 Classification

Settings. In order to examine and compare the classifica-
tion performance and the neutralization effect of η-neutral
logistic regression with other methods, we performed ex-
periments on five real data sets specified in Table 3. In the
table, #Inst. and #Attr. denote the number of examples and
the number of the attributes, respectively; “Viewpoint” and
“Target” denote the attribute used as the target variable and
the viewpoint variable, respectively. Table 3 also shows the
number of examples with the target variable (#y+) and the
viewpoint variable (#v+). In addition, the table shows the
prediction accuracy of the logistic regression without neu-
tralization with respect to the target variable (Acc(y)) and
the viewpoint variable (Acc(v)).

We compared the following methods: logistic regres-
sion (LR, no neutrality guarantee), logistic regression that
learns without using the values of viewpoint (LRns), the
Naive Bayes classifier (NB, no neutrality guarantee), the
Naive Bayes classifier that learns without the values of view-
point (NBns), CV2NB [3], logistic regression that uses the
PR [13], and η-neutral logistic regression with viewpoint
neutrality (ηLR, proposal). In the PR method, the regular-
izer parameter λ, which balances the loss minimization and
neutralization, was varied as λ ∈ {0, 5, 10, 15, 20, 30}. The
neutrality parameter η, which determines the degree of neu-
trality, was varied as η ∈ {0.00, 0.01, . . . , 0.40}. All dataset
attributes were discretized by the same procedure described
in [3] and coded by 1-of-K representation for LR, LRns, PR
and ηLR.

As neutrality indices of prediction models, normalized
prejudice index (NPI) and η̂ are introduced. NPI is defined
as the normalized mutual information of the target random
variable Y and the viewpoint random variable V , normalized
by the entropy of Y and V [4]:

NPI =
I(X; Y)√

H(Y)H(V)
,
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Table 4 Summary of the treatment of the viewpoint random variables in
two settings.

case method learning neutrality neutrality
of f (y|x) guarantee measure

Case 1
others x, v v f (y|x; θ), v

ours x, v g(v|x) f (y|x; θ), v

Case 2
others x, v̂ v̂ f (y|x; θ), v

ours x, v̂ g(v|x) f (y|x; θ), v

where I(X; Y) is the mutual information of target Y and
viewpoint V , I(X; Y)/H(Y) is the ratio of information of V
used for predicting Y , and I(X; Y)/H(V) is the ratio of in-
formation that is exposed if a value of Y is known. Thus
NPI can be interpreted as the geometrical mean of these two
ratios. The range of this NPI is [0, 1].

The neutrality measure η̂ is defined as

η̂ = max
y∈Y,v∈V

P̃r (v, y)

P̃r (v) P̃r (y)
− 1,

where η̂ can be interpreted as the degree of the dependency
of y and v with which the largest dependency occurs. If
Y and V are mutually independent, η̂ = 0. If the neutral-
ity measure with respect to a target prediction model is η̂,
it means the model of Eq. (4) is empirically η̂-neutral with
respect to the given examples.

We compared the three measures: accuracy, normal-
ized prejudice index (NPI), and η̂ of η-neutrality. These in-
dices were evaluated with five-fold cross validation and the
average values of ten different folds are shown in the plots.

The values used for the learning of f (y|x), the guar-
antee of neutrality, and the measurement of neutrality are
summarized in Table 4. For the guarantee of neutrality, we
consider the following two cases.

Case 1 assumes that the values of the viewpoint ran-
dom variable are provided in examples. In this case, our
method performs neutralization with respect to the model
of the viewpoint learned from the examples, whereas other
methods perform neutralization with respect to the actual
viewpoint values provided.

Case 2 assumes that the values of the viewpoint are
not provided. Instead, the model of the viewpoint variable,
g(v|x), is provided. In this case, our method again learns the
model of the target without using values of the viewpoint
and performs neutralization with respect to the given model
g. Other methods need the values of the viewpoint, so these
are estimated as v̂ = argmaxvg(v|x). Other methods then
learn the model of the target with (x, v̂), and neutralization
is performed with respect to v̂.

As a measurement of neutrality, all methods used the
true viewpoint value v in both cases.

Results. Figure 2 shows the experimental results. In
the graphs, the best result is at the left top. Comparing the
results of NB and NBns in Adult, Dutch Census and Bank
Marketing, we can see that the improvement of neutrality
by elimination of the viewpoint variable is limited in both
cases. The same applies to LR and LRns.

In both cases, CV2NB achieves better neutrality than

NBns in terms of both NPI and η̂ in Adult and Dutch Cen-
sus. In addition, the decrease in the accuracy of the predic-
tion is less than 1% in the Adult dataset and 5% in the Dutch
Census. On the other hand, neutralization by CV2NB dose
not work well in Bank Marketing and German Credit Data;
the neutralization level of CV2NB is worse than NBns. As
shown in Table 3, the number of positive viewpoint of these
datasets is fewer than the negative viewpoint values, in com-
parison with the other datasets. The degradation of perfor-
mance of CV2NB in Bank Marketing and German Credit
Data can be caused by such imbalanced viewpoint labels.

In both cases, PR successfully balances the NPI or the
η̂ and the accuracy for Adult and Dutch Census datasets, but
dominated by ηLR. In order to neutralize the target predic-
tion model, PR adds non-convex NPI term to the objective
function. Due to the non-convexity of the objective func-
tion, both the accuracy and the neutralization level of the
prediction model can be worsen.

In both cases, our η-neutral logistic regression success-
fully balances neutralization and accuracy of the predication
by changing η in Adult, Dutch Census and Bank Marketing.
Particularly, in Bank Marketing, even though the neutral-
ization level of the other methods is almost the same as its
baseline (LR or NB), our ηLR can achieve the prediction
model with low neutralization level. Furthermore, the de-
crease in the accuracy of the prediction was at most 5% in
these datasets, even after strong neutralization with small η.
Whereas both of the neutralization level and the accuracy of
PR can be worsen due to the non-convexity of the neutral-
ity term in the objective function, the neutralization by con-
straints guarantees the neutralization level even if the con-
straints is non-convex. Thus, ηLR empirically works well
even if its constraints is non-convex.

In German Credit Data, the neutralization level of ηLR
is lower than LRns in both cases. It is noteworthy that the
neutralization level of ηLR is even lower than LR in Case
2. This was again due to imbalanced viewpoint labels of
the dataset. The given model of the viewpoint is trained
so that it ignores minor viewpoint label. Hence, due to the
overfitting of the model learned by ηLR with such model
of the viewpoint to major viewpoint label, the neutralization
level of ηLR may be lower than LR.

In Credit Approval, all neutralization technique did not
work well in both cases. From Table 3, the number of the
example set of these datasets are up to seven hundred. This
result can indicate that estimation of the neutrality measures
for test dataset need sufficiently number of the example set.

5.2 Regression

Settings. In order to investigate the behaviors of neutral-
ization in linear regression, we performed experiments of
η-neutral linear regression on three real datasets specified in
Table 5. As with the specification of the dataset for the clas-
sification, the table shows #Inst., #Attr., “Viewpoint” and
“Target”. In addition, the table also provides “Corr”, the
correlation coefficient between the target variable and the
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Fig. 2 Accuracy vs. neutrality measure. Each subplot displays the result of Case 1 (left) and the result
of Case 2 (right) corresponding to the datasets and the neutrality measure (η̂ or NPI).

Table 5 Specification of datasets for regression task. #Inst., #Attr., “Viewpoint” and “Target” de-
note the number of example sets, the number of attributes, the attribute used as the target variable and
the attribute used as the viewpoint variable, respectively. “Corr” represents the correlation coefficient
between the target variable and the viewpoint variable.

dataset #Inst. #Attr. Viewpoint Target Corr
Housing [18] 506 14 LSTAT MEDV -0.738
Wine Quality (Red) [18] 1599 12 alcohol quality 0.476
Communities and Crime [18] 1994 123 PctKids2Par ViolentCrimesPerPop -0.738

viewpoint variable. We chose the viewpoint variables for
each dataset as the attribute of which the correlation coef-
ficient with respect to the target variable maximizes. All
the attributes, the target variable and the viewpoint variable

were scaled into the range [−1, 1]. Letting the regression pa-
rameters of the target f and viewpoint g be w and wv, respec-
tively, the predicted values were ŷ = wT x and v̂ = wT

v x. The
neutrality parameter η was varied as η ∈ {2−12, 2−11, . . . , 22}.
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Fig. 3 The plots show RMSE and the absolute value of the correlation coefficient between the pre-
dicted target value and the viewpoint value corresponding to the neutrality parameter η.

Fig. 4 Scatter plots with respect to Housing dataset. Top row: scatter plots of target prediction value
ŷ and true target value y. Bottom row: scatter plots of target prediction value ŷ and viewpoint prediction
value v̂. Correlation in the ŷ − v̂ plots means that the neutralization level of the regression model is low.

The accuracy of the prediction was measured by root-mean-
square error (RMSE); η̂ and the correlation coefficient be-
tween the target variable and the viewpoint variable were
used as the measure of neutrality.

Results. Figure 3 shows RMSE and the absolute value
of the correlation coefficient between the predicted target
value ŷ and the viewpoint value v corresponding to the neu-
trality parameter η. For all datasets, the plots explicitly show
that the correlation coefficient becomes lower and RMSE
becomes higher as η decreases. This results show that our η-
neutral linear regression with low neutrality parameter η can
obtain the neutral regression model in the sense of the corre-
lation coefficient. Furthermore, this results indicate that our
η-neutral linear regression can use η to successfully control
the neutralization level of the regression model.

Figure 4 shows the scatter plots of (ŷ, y) (the top row)
and (ŷ, v̂) (the bottom row) with η ∈ {2−9, 2−6, 2−3} on the
Housing dataset. From left to right, the neutrality parame-
ter η was varied as η ∈ {2−9, 2−6, 2−3}. The most right fig-
ures show the results without neutralization. The (ŷ, v̂) plot
represents the prediction accuracy of the regression model.
When the model achieves a better RMSE, the points in the
(ŷ, y) plot concentrate more along the diagonal line. At the
same time, the (ŷ, v̂) plot represents neutrality. If the neutral-
ity is low, correlation between ŷ and v̂ appears in the (ŷ, v̂)
plot.

In Fig. 4 (h), a strong negative correlation between ŷ
and v̂ can be found. Thus, this regression model has a low
neutrality if no neutralization is performed. In Fig. 4, the
level of neutralization increases from right to left. The plots
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show that the dependency of ŷ on v̂ becomes weaker as η de-
creases. In Fig. 4 (e), we can see that the regression model of
the target value that has high neutrality outputs almost con-
stant values; such regression is useless even if the model is
well neutralized. Thus, selection of η is important to obtain
a neutralized regression model with high accuracy.

6. Conclusion

In this paper, we propose a framework for using a maximum
likelihood estimation for learning probabilistic models with
neutralization. There are two key points in which our pro-
posal is different from existing methods.

First, our method guarantees neutrality of the target
prediction model with respect to a given viewpoint predic-
tion model. Due to this model-based neutralization, our
method allows neutralization of target prediction models
with respect to viewpoints arbitrarily defined by users, as
long as the viewpoint prediction model is provided in the
form of a probabilistic distribution.

Second, our neutrality measure, η-neutrality, is based
on the principle that the model should guarantee neutrality
with respect to every combination of target and viewpoint
value that appears in the dataset.

In order to clarify the relationship between the neu-
trality measures, we define the neutrality factor. Then, we
showed that all of the neutrality measures are represented
with aggregation of the neutrality factors. We also show
that η-neutrality can upper bound all of the other neutrality
measures.

Experimental results show that our method with model-
based neutralization achieves neutralization even when only
a model of the viewpoint is provided. In addition, it balances
the accuracy of the target prediction with the neutrality. As
discussed in Sect. 3.1 and Sect. 3.2, likelihood maximization
with the η-neutrality constraint is nonconvex optimization;
this is due the nonconvexity of the constraint function. As
an area of future work, we intend to find a way to convexify
the constraints induced by the neutrality condition.

The privacy problem is strongly related to the neutral-
ity problem. The difference between the privacy problem
and the neutrality problem causes from the treatments of
the sensitive information. The sensitive information in the
privacy problem is individuals’ information that they want
not to be published. On the other hand, the sensitive infor-
mation in the neutrality problem, which is equivalent to the
viewpoint random variable, is individuals’ information that
they want not to be made decisions depending on this infor-
mation. Following the treatment of the sensitive informa-
tion, we can define the adversaries in the privacy problem
as entities that can predict the sensitive information. The
adversaries in the neutrality problem can be defined in the
same manner as entities that make decisions depending on
the sensitive information.
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Appendix: Proof of Lemma 2

Proof. Let Y+ = {y ∈ Y|P̃r (y|v+) ≥ P̃r (y|v−)} and let Y− =
{y ∈ Y|P̃r (y|v+) ≤ P̃r (y|v−)}. Then, we have

Dtv(P̃r (Y |v+) , P̃r (Y |v−))

=
1
2

∑
y∈Y
|P̃r (y|v+) − P̃r (y|v−) |

=
1
2

[ ∑
y∈Y+

(P̃r (y|v+) − P̃r (y|v−))

+
∑
y∈Y−

(P̃r (y|v−) − P̃r (y|v+))
]

=
1
2

[ ∑
y∈Y+

(P̃r (y|v+) − P̃r (y|v−))

+
∑
y∈Y+

(P̃r (y|v+) − P̃r (y|v−))
]

(∵
∑
y∈Y−

P̃r (y|v) = 1 −
∑
y∈Y+

P̃r (y|v) ∀v ∈ V)

=
∑
y∈Y+

(P̃r (y|v+) − P̃r (y|v−)). (A· 1)

Similarly, we obtain

Dtv(P̃r (Y |v+) , P̃r (Y |v−)) =
∑
y∈Y−

(P̃r (y|v−) − P̃r (y|v+)).

(A· 2)

Combining Eq. (A· 1) and Eq. (A· 2) and with the fact that
P̃r (v+) + P̃r (v−) = 1, we have

Dtv(P̃r (Y |v+) , P̃r (Y |v−))

= P̃r (v−)
∑
y∈Y+

(P̃r (y|v+) − P̃r (y|v−))

+ P̃r (v+)
∑
y∈Y−

(P̃r (y|v−) − P̃r (y|v+))

=
∑
y∈Y+

(P̃r (v−) P̃r (y|v+) − P̃r (y, v−))

+
∑
y∈Y−

(P̃r (v+) P̃r (y|v−) − P̃r (y, v+))

=
∑
y∈Y+

((1 − P̃r (v+))P̃r (y|v+) − P̃r (y, v−))

+
∑
y∈Y−

((1 − P̃r (v−))P̃r (y|v−) − P̃r (y, v+))

=
∑
y∈Y+

(P̃r (y|v+) − P̃r (y)) +
∑
y∈Y−

(P̃r (y|v−) − P̃r (y))

(∵ P̃r (y, v+) + P̃r (y, v−) = P̃r (y) ∀y ∈ Y)

=
∑
y∈Y+

P̃r (y)
P̃r (y|v+)

P̃r (y)
+
∑
y∈Y−

P̃r (y)
P̃r (y|v−)

P̃r (y)
− 1.

(A· 3)

From definition of Y+ and Y−,

P̃r (y|v+)=max{P̃r (y|v+),P̃r (y|v−)} if y ∈ Y+, and
(A· 4)

P̃r (y|v−)=max{P̃r (y|v+),P̃r (y|v−)} if y ∈ Y− (A· 5)

hold. By substituting Eqs. (A· 4) and (A· 5) into Eq. (A· 3),
we have

Dtv(P̃r (Y |v+) , P̃r (Y |v−))

=
∑
y∈Y

P̃r (y)
max{P̃r (y|v+) , P̃r (y|v−)}

P̃r (y)
− 1

= EY

[
max{P̃r (y|v+) , P̃r (y|v−)}

P̃r (y)

]
− 1

= EY

[
max

{
P̃r (y, v+)

P̃r (y) P̃r (v+)
,

P̃r (y, v−)

P̃r (y) P̃r (v−)

}]
− 1

= EY

[
max
v∈{v+,v−}

P̃r (y, v)

P̃r (y) P̃r (v)

]
− 1.
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