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Abstract

Object ranking is a problem that involves order-
ing given objects by aggregating pairwise com-
parison data collected from one or more evalu-
ators; however, the cost of object evaluations is
high in some applications. In this paper, we pro-
pose an efficient data collection method called pro-
gressive comparison, whose objective is to col-
lect many pairwise comparison data while reduc-
ing the number of evaluations. We also propose
active learning methods to determine which object
should be evaluated next in the progressive compar-
ison; we propose two measures of expected model
changes, one considering the changes in the evalu-
ation score distributions and the other considering
the changes in the winning probabilities. The re-
sults of experiments using a synthetic dataset and
two real datasets demonstrate that the progressive
comparison method achieves high estimation accu-
racy with a smaller number of evaluations than the
standard pairwise comparison method, and that the
active learning methods further reduce the number
of evaluations as compared with a random sampling
method.

1 Introduction

Object ranking is a problem to order given objects by aggre-
gating pairwise comparison data; It has various applications
in optimizing Web services such as EC sites and search en-
gines based on behaviors of customers or users. In sports or
games played between multiple teams, match results during a
particular period are aggregated into a team ranking list.

The pairwise comparison data is frequently discordant;
when two players play chess, it naturally happens that one
of the players wins in the first match and the other wins in
the second match. In order to estimate a reasonable ranking
list from such datasets, several existing approaches deal with
such ambiguity using probabilistic models [Keener, 1993;
Bradley and Terry, 1952; Glickman, 1999; Radlinski and
Joachims, 2007; Elo, 1978; Herbrich et al., 2006].
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Figure 1: (a) the standard pairwise comparison method and
(b) the proposed progressive comparison method. In the stan-
dard pairwise comparison, an evaluator first evaluates two
objects, and then submits the preferred one; therefore ob-
taining three pairwise comparison results requires six object
evaluations. In the progressive comparison, the evaluator is
asked if the current evaluated object is preferred to the pre-
viously evaluated object; therefore the evaluator needs only
four object evaluations to obtain three pairwise comparison
results, which means that the progressive comparison method
can collect more comparison results with fewer evaluations
than the standard pairwise comparison.

Estimation of a reasonably accurate ranking often requires
many comparison results, and it is often costly to collect such
datasets. Usually, an evaluator first evaluates two objects, and
reports the preferred one to create one comparison result; to
obtain K pairwise comparison results, we need 2K evalua-
tions (Fig. 1(a)). In this paper, we especially consider the
cases where the cost of an evaluation is much higher than
that of a comparison; for example, ordering text documents
by their quality, and ranking restaurants. An evaluation, i.e.,
reading a document or eating in a restaurant, is much more
costly than comparing two of them. Moreover, increase in the
number of evaluations also affects their quality and stability
since the evaluator becomes tired or on a full stomach.

In this paper, we propose the progressive comparison

method (Fig. 1(b)). Each time the evaluator makes an ob-
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ject evaluation, the evaluator is requested to answer whether
or not the current evaluated object is preferred to the previous
one. In contrast with the standard pairwise comparison, the
progressive comparison requires only K + 1 evaluations to
obtain K pairwise comparison results.

We also propose active learning methods for the progres-
sive comparison to further reduce data collection efforts.
These methods select the object to be evaluated next based
on the amount of information gained from the object eval-
uation and comparison. We propose two measures of such
information gain: the change in distributions and the change

in winning probabilities.
We present experiments conducted using a synthetic

dataset and two real datasets in order to verify the cost ef-
fectiveness of the proposed methods. We show progressive
comparison achieves higher accuracy with a smaller number
of evaluations than the standard pairwise comparison, and our
active learning methods more effectively estimate rankings
than the method that randomly selects the next object.

In summary, this paper makes the following three contri-
butions: (i) the progressive comparison method which is an
efficient data collection method for pairwise comparison data
with a small number of evaluations, (ii) active learning meth-
ods for the progressive comparison using two measures of ex-
pected model changes, and (iii) the property of datasets that
the active learning methods applied in the progressive com-
parison method operate effectively.

2 Ranking Estimation Problem with High
Evaluation Costs

We consider N objects o1, . . . , oN , and denote by (o

i

, o

j

) a
pairwise comparison result indicating that object o

i

is pre-
ferred to object o

j

. We also denote by C the multiset consist-
ing of the comparison results. In many cases, the elements
of C are discordant; in other words, C contains both (o

i

, o

j

)

and (o

j

, o

i

). Our goal is to estimate an accurate ranking from
C while keeping the collection cost of C as low as possible.

In this paper, we particularly focus on the cost in terms of
the number of evaluations. An evaluation involves giving an
(internal) score ✓

i

to an object o
i

, for example, the beauty of
an image, impressiveness of an article, or the deliciousness of
food. A comparison involves determining the winner based
on the two object scores to create one comparison result. Our
important assumption is that the cost of an evaluation is sub-
stantially larger than that of a comparison; therefore, reduc-
ing the collection cost of C requires reducing the number of
evaluations.

3 Progressive Comparison
3.1 Progressive Comparison
Linear ordering and pairwise comparison are two typical data
formats in ranking estimation problems. In the linear order-
ing, each evaluator evaluates all objects o1, . . . , oN , and sub-
mits a ranking list of the N objects. Since the evaluators have
to remember the scores of all objects before creating the rank-
ing list, this is difficult for a large N .

In the pairwise comparison, as shown in Figure 1(a), each
evaluator evaluates two objects, and then reports the preferred
one. For example, the evaluator receives objects o

i

and o

j

,
and submits either (o

i

, o

j

) or (o
j

, o

i

). The evaluator needs
only to remember the two objects to make a comparison. This
method requires 2K evaluations to obtain K pairwise com-
parison results.

To reduce the evaluation costs of the standard pairwise
comparison method, we propose the progressive comparison.
As shown in Fig. 1(b), when an evaluator evaluates an ob-
ject, she compares it with the preceding evaluated object and
judges which one is preferred. This means that an evaluator
first evaluates objects o1 and o2, and submits the comparison
result for o1 with o2, and then evaluates object o3 and submits
the comparison result for o2 with o3. The evaluator repeatedly
carries out the above operation. In order to compare K pairs
of objects, this method requires only K+1 evaluations of ob-
jects. As compared with pairwise comparison, we can obtain
more comparison results with fewer evaluations1.

3.2 Ranking Estimation
We employ the Bradley-Terry model which is a popular prob-
abilistic model for pairwise comparison [Bradley and Terry,
1952]. The Bradley-Terry model gives the probability an
evaluator prefers object o

i

to o

j

as P ((o

i

, o

j

)) = �

i

/ (�

i

+

�

j

), where �

i

,�

j

> 0 are positive parameters that represent
the object scores of o

i

, o

j

, respectively.
The glicko update equations are an approximate Bayesian

estimation procedure for the Bradley-Terry model proposed
by Glickman (1999). Following the original notations, we
rescale �

i

as �

i

= 10

✓

i

/400 using the (scaled) object score
✓

i

. We assume that ✓
i

follows a Gaussian prior distribution
N(µ

i

,�

2
i

) where µ
i

and �

2
i

are the mean and variance param-
eters, respectively. In the progressive comparison scenario,
when an object o

i

is evaluated, ✓
i

is sampled from the Gaus-
sian prior distribution N(µ

i

,�

2
i

); then ✓

j

for the next object
o

j

is sampled from N(µ

j

,�

2
j

), and a comparison result of o
j

and o

i

is determined with P ((o

i

, o

j

)). Similarly, another ob-
ject o

k

is evaluated to obtain ✓

k

, which is then compared with
✓

j

to give another comparison result. Note that every time an
object o

i

is evaluated, ✓
i

is re-sampled from the correspond-
ing Gaussian distribution.

The glicko update equations update parameters µ(o
i

,o

j

)
i

and

�

(o
i

,o

j

)
i

2
using comparison result (o

i

, o

j

) as follows:

µ

(o
i

,o

j

)
i

= µ

i

+

q

1/�

2
i

+ 1/�

2
g(�

2
j

){1� E(µ

i

, µ

j

,�

2
j

)},

�

(o
i

,o

j

)
i

2
=

✓
1

�

2
i

+

1

�

2

◆�1

,

where q = log(10)/400, g(�

2
) =

hp
1 + 3q

2
�

2
/⇡

2
i�1

,

E(µ

i

, µ

j

,�

2
j

) =

h
1 + 10

�g(�2
j

)(µ
i

�µ

j

)/400
i�1

and �

2
=

1One might wonder if the progressive comparison method is in
fact a new idea; however, we are not aware of the method having
been previously proposed in the literature.
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⇥
q

2
g(�

2
j

)

2
E(µ

i

, µ

j

,�

2
j

){1� E(µ

i

, µ

j

,�

2
j

)}
⇤�1. We repeat-

edly update each µ

i

by using each comparison result in C,
and finally obtain an object ranking list by sorting the conclu-
sive {µ1, . . . , µN

} in descending order.
Note that since the results of pairwise comparisons ob-

tained by the progressive comparison method are not i.i.d.,
the standard estimation methods are not applicable in the
strict sense, which means that we approximate the likelihood
or posterior by making the independence assumption. In the
experimental section, we will see this approximation is effec-
tive in practice.

4 Active Learning for Progressive
Comparison

4.1 Active Learning
To further reduce the number of evaluations and accelerate
the estimation, we resort to active learning, which actively
selects the unlabeled data to be labeled [Settles, 2012].

In active learning for the standard pairwise comparison, a
learning algorithm actively selects two objects to be com-
pared next. Conversely, an active learning algorithm in the
progressive comparison selects one subsequent object. Let
us assume that the preceding evaluated object is o

i

. We first
calculate u

ij

for all j, where u

ij

is the expected information
gain by selecting o

j

as the next object, and then o

j

⇤ that max-
imizes u

ij

is selected. In this study, we consider two types
of information gain: change in distributions and change in

winning probabilities.

4.2 Change in Distributions
When it turns out that an evaluator prefers object o

i

to object
o

j

, the glicko update equations update the posterior distribu-

tions N(µ

i

,�

2
i

) and N(µ

j

,�

2
j

) to N(µ

(o
i

,o

j

)
i

,�

(o
i

,o

j

)
i

2
) and

N(µ

(o
i

,o

j

)
j

,�

(o
i

,o

j

)
j

2
), respectively, where µ

(o
i

,o

j

)
i

, �(o
i

,o

j

)
i

2
,

µ

(o
i

,o

j

)
j

, and �

(o
i

,o

j

)
j

2
are the parameters of the Gaussian dis-

tributions updated by assuming that an evaluator gives a com-
parison result (o

i

, o

j

). As shown in Fig. 2, a possible choice
of our information gain is the amount of changes of the two
Gaussian distributions, which is measured in the sum of the
Kullback-Leibler (KL) divergences, that is,

F ((o

i

, o

j

)) =DKL(N(µ

(o
i

,o

j

)
i

,�

(o
i

,o

j

)
i

2
) k N(µ

i

,�

2
i

))

+DKL(N(µ

(o
i

,o

j

)
j

,�

(o
i

,o

j

)
j

2
) k N(µ

j

,�

2
j

)),

where DKL(P k Q) is the KL divergence between two prob-
ability distributions P and Q.

Taking the expectation of F ((o

i

, o

j

)) over two cases
(o

i

, o

j

) and (o

j

, o

i

), we define an expected information gain
measure called change in distributions as
u

ij

= P ((o

i

, o

j

))⇥ F ((o

i

, o

j

)) + P ((o

j

, o

i

))⇥ F ((o

j

, o

i

)),

where P ((o

i

, o

j

)) is the probability that an evaluator prefers
object o

i

to o

j

, which is readily calculated with

P ((o

i

, o

j

)) =

Z µ

i

�µ

jr
�

2
i

+�

2
j

�1

1p
2⇡

e

� x

2

2
dx = �

0

@ µ

i

� µ

jq
�

2
i

+ �

2
j

1

A
,

(1)

If oi wins:

The distribution of the score   

of object oi

The distribution of the score   

of object oj

If oj wins:

Figure 2: The information gain based on change in distribu-
tions. The information gain by comparing object o

i

and ob-
ject o

j

is given as the expectation over two cases (o
i

, o

j

) and
(o

j

, o

i

). For each case, the amount of change is measured by
the sum of the KL-divergences between the Gaussian distri-
butions of object scores.

where �(·) is the cumulative Gaussian distribution [Mackay
and Chaiy, 1982].

4.3 Change in Winning Probabilities
Since what we are interested in is the ranking list of ob-
jects which summarizes relative merits between any two ob-
jects, it seems a reasonable idea to consider the change in
winning probabilities among objects as the information gain
measure. Since a winner determination is a Bernoulli trial,
such changes are measured in the KL divergences between
Bernoulli distributions, that is,

DKL

⇣
B(p

(o
i

,o

j

)
xy

) k B(p

xy

)

⌘

= p

(o
i

,o

j

)
xy

log

p

(o
i

,o

j

)
xy

p

xy

+ (1� p

(o
i

,o

j

)
xy

) log

(1� p

(o
i

,o

j

)
xy

)

(1� p

xy

)

,

where B(·) denotes a Bernoulli distribution, and p

xy

is the
probability that an evaluator prefers object o

x

to o

y

, and
p

(o
i

,o

j

)
xy

is the probability updated by the glicko update equa-
tions with a comparison results (o

i

, o

j

). Similar to Eq. (1),
p

xy

and p

(o
i

,o

j

)
xy

are readily calculated with

p

xy

= �

0

B@
µ

x

� µ

yq
�

2
x

+ �

2
y

1

CA , p

(o
i

,o

j

)
xy

= �

0

B@
µ

(o
i

,o

j

)
x

� µ

(o
i

,o

j

)
yq

�

(o
i

,o

j

)
x

2
+ �

(o
i

,o

j

)
y

2

1

CA .

In contrast with measuring the change in two Gaussian
distributions, changes in two Bernoulli distribution cause
changes in all of the related winning probabilities, namely,
they affect the winning probability one of whose objects is
either o

i

or o

j

. Therefore, as shown in Figure 3, the total
amount of changes in the winning probabilities is given as

G ((o

i

, o

j

)) =

X

{(x,y)|x=i or y=j}

DKL

⇣
B(p

(o
i

,o

j

)
xy

)||B(p

xy

)

⌘
.

Now we define an expected information gain measure called
change in winning probabilities defined as

u

ij

= P ((o

i

, o

j

))⇥ G ((o

i

, o

j

)) + P ((o

j

, o

i

))⇥ G ((o

j

, o

i

))

where P ((o

i

, o

j

)) is the probability that an evaluator prefers
object o

i

to o

j

, which is calculated with Eq. (1).
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Figure 3: The information gain based on change in win-
ning probabilities. The information gain by comparing ob-
ject o

i

and object o

j

is given as the expectation over two
cases (o

i

, o

j

) and (o

j

, o

i

). For each case, the amount of
change is measured by the sum of KL-divergences between
the Bernoulli distributions of winning probabilities.

5 Experiments
5.1 Experimental Settings
We conducted two experiments using a synthetic dataset and
two real datasets to examine the effectiveness of our proposed
approach. The first experimental result demonstrates that the
progressive comparison requires fewer numbers of evalua-
tions than the standard pairwise comparison method. The
second result demonstrates that our proposed active learning
approach is more efficient than the baseline method which
randomly samples objects to be evaluated.

Throughout the experiments, the parameters are initialized
µ

i

= 1, 500 and �

2
i

= 147

2
= 21, 609 by following the set-

tings of the glicko update equations [Glickman, 1999]. Ev-
ery time the parameters are updated, we compare the cur-
rent estimated ranking list with the true one. The estimated
ranking list is obtained by sorting values µ1, . . . , µN

in de-
scending order. The similarity between two ranking lists is
measured using Spearman’s rank correlation ⇢

[Spearman,
1906]. Let T and E be the rank vectors of the true rank-
ing and the estimated ranking, respectively; ⇢ is given as
⇢ = 1� 6⇥ dSpear(T,E) / (N

3 �N), where dSpear(T,E)

is the Spearman distance which is the squared Euclidean dis-
tance between T and E.

5.2 Datasets
The first dataset is a synthetic dataset comparing 100 objects.
The true scores of object i is given as µ

i

= i� 1, and its true
variance as �2

i

= 100. Each evaluation draws a score ✓

i

from
the Gaussian distribution N(µ

i

,�

2
i

), and the winner of o
i

and
o

j

is determined by comparing ✓

i

and ✓

j

.
The image comparison dataset includes 25, 500 pairwise

comparison results of 50 scenery images collected by using
Lancers crowdsourcing marketplace2. Each crowdsourcing
task presents ten pairs of images, and a crowdsourcing worker
is asked to tell which picture of each pair is better for a post-
card3. The true scores of the objects are defined as follows;

2http://www.lancers.jp/
3The dataset is available at http://goo.gl/6MS9MK.

we apply the glicko update equations to all of the pairs of the
dataset in random order, and obtain final estimates. This pro-
cedure is repeated ten times, and the averaged final estimates
are used as the ground truths of the ranking4.

The Wikipedia article comparison dataset consists of
8, 700 pairwise comparison results of 30 Wikipedia articles.
The dataset includes 15 featured articles and 15 non-featured
articles selected randomly from “Wikipedia: Featured arti-
cles”3. Each crowdsourcing task presents five pairs of article
links, and a crowdworker is asked to tell the more substantial
article. Some exemplars are also presented in order to illus-
trate the evaluation criteria. Similar to the image comparison
dataset, the average of ten sweeps of the whole dataset with
different orders is used to create the ground truth ranking.

Figure 4 shows the histograms of the true object scores
in the three datasets. Figure 4(a) corresponds to the syn-
thetic dataset; the histogram is flat. On the other hand,
the histogram for the image comparison dataset is uni-
modal (Fig. 4(b)). Figure 4(c) shows the histogram for the
Wikipedia dataset; the objects with high scores and those with
low scores are rather separated.

5.3 Results

Pairwise Comparison vs. Progressive Comparison
To compare the standard pairwise comparison and the pro-
posed progressive comparison. we investigate the accuracy
of the estimated ranking in terms of the numbers of compar-
isons and evaluations using the synthetic dataset.

Figures 5(a) and 5(b) show the accuracy of the ranking ver-
sus the number of comparisons and evaluations, respectively.
We denote the performance of the progressive comparison by
‘Progressive’ and the standard pairwise comparison by ‘Pair-
wise.’ We denote by ‘Distribution’ active learning using the
change in distributions measure, ‘WinProb’ by the one using
the change in winning probabilities measure, and by ‘Ran-
dom’ the random sampling method.

Figure 5(a) shows the performance depending on the num-
ber of comparisons. The standard pairwise comparison
method performs better than the progressive comparison in
all of the random sampling method and two active sam-
pling methods; this is because the progressive comparison
has fewer options in selecting the next pair. In contrast, Fig-
ure 5(b) shows the progressive comparison method signifi-
cantly outperforms the standard pairwise comparison in terms
of the number of evaluations. This is because the standard
pairwise comparison obtains K/2 comparison results by K

evaluations, whereas the progressive comparison method can
obtain K � 1 comparison results by K evaluations. As dis-
cussed earlier, the progressive comparison method collects
comparison data in a non-i.i.d. manner, we need to approxi-
mate the likelihood or posterior by making the independence
assumption. The result suggests this approximation is effec-
tive in practice. Due to the space limitation, we omit the re-
sults for the real datasets in Figure 5. We confirmed that they
led to the same conclusion as the synthetic dataset.

4The estimates were stable regardless of the presentation order.
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(a) Synthetic dataset (b) Image dataset (c) Wikipedia article comparison dataset

Figure 4: Histograms of the true object scores for three datasets.

(a) Estimation accuracy vs. number of comparisons

(b) Estimation accuracy vs. number of evaluations

Figure 5: Accuracy of ranking lists by the standard pairwise
comparison and the progressive comparison for the synthetic
dataset.

Efficiency of Active Learning Methods
We compare the proposed active learning methods using the
two information gain measures: the change in distributions
measure and the change in winning probabilities measure,
with a baseline approach using uniform sampling. Fig-
ure 6 shows the comparison results of the accuracy of these
methods. The accuracy of the estimated ranking lists is mea-
sured using Spearman’s rank correlation between a true rank-

ing list and an estimated ranking list. We denote the active
learning method using the change in distributions measure
by ‘Distribution’, and the one using the change in winning
probabilities measure by ‘WinProb’, and the random sam-
pling method by ‘Random.’ A solid line, a broken line, and
a one-point broken line show the accuracy averages, and the
transparently painted areas around these lines represent stan-
dard deviations. Figure 6(a) shows the result for the synthetic
dataset. Our active learning methods obtain accurate ranking
lists faster than the random method, and the method using the
change in winning probabilities performs better than the one
using the change in distributions. In terms of standard de-
viation, the area of the baseline method and those of active
learning methods are clearly separated. However, for the im-
age comparison dataset, the standard deviation areas of the
three methods extensively overlap in Figure 6(b), and there-
fore we find no clear advantage of the proposed methods over
the baseline method. The inconsistency of the two results is
explained by the histograms of the true scores. Figure 4(a)
shows the true scores of the synthetic dataset distribute uni-
formly, which means the true ranking is rather clear, and the
proposed sampling methods are quite effective. On the other
hand, Figure 4(b) shows the true scores of the image com-
parison dataset rather concentrate around the average, which
means the dataset has many pairs whose winners are am-
biguous, and the proposed sampling methods have no ad-
vantage in such datasets. Figure 6(c) shows the result for
the Wikipedia dataset; the proposed methods outperform the
baseline method especially after 200 evaluations, and there is
no overlap between standard deviation areas. The method us-
ing the change in winning probabilities outperforms the one
using the change in distributions when the number of evalu-
ation is relatively small. In Fig. 4(c), the high-scored objects
and the low-scored objects are separated in this dataset, that
is, this dataset includes many pairs whose winners are readily
determined as well as the synthetic dataset.

We also investigate the average number of evaluations re-
quired for Spearman’s rank correlation to reach 0.9. The
number of evaluations is the largest for the random sampling
method and the smallest for the active sampling method using
change in winning probabilities. The Wilcoxon signed-rank
test [Wilcoxon, 1945] with 0.01 significance level shows sta-
tistically significant differences for all pairs of the methods
except for the difference between the active sampling using
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(a) Synthetic dataset (b) Image dataset (c) Wikipedia dataset

Figure 6: Comparison of active learning methods using two types of information gain measures, the “change in distributions”
measure and the “change in winning probabilities” measure with a baseline approach using uniform sampling.

the change in distributions and the random sampling method
in the image comparison dataset. The method using change
in winning probabilities is superior to the random sampling
method for all datasets with the statistical significance. In
summary, the method using change in winning probabilities
is the most promising to reduce the number of evaluations
among the three methods.

6 Related Work
There has been much existing work in object ranking by
aggregating the pairwise comparison results; to name a
few, Keener proposed a method based on the eigenvector
of the matrix that contains the comparison results [Keener,
1993]. Bradley and Terry proposed the Bradley-Terry model,
which is a stochastic model of pairwise comparison, and
its maximum likelihood estimation method [Bradley and
Terry, 1952]. In addition, Glickman proposed an approxi-
mated Bayesian estimation method of the model [Glickman,
1999]. Based on Glickman’s update equations, Radlinski
and Joachims proposed an algorithm that estimates the Web
page ranking ordered by relevance for a search query [Radlin-
ski and Joachims, 2007]. The Elo rating system, which is
a rating system for measuring the ability of chess players,
was proposed by Elo [Elo, 1978]. Herbrich et al. proposed
TrueSkillTM [Herbrich et al., 2006], which is another rat-
ing system for estimating the ability of online game players,
based on the Elo rating system.

To estimate a ranking list from the results of pairwise com-
parisons collected from crowdsourcing workers, the Crowd-
BT model, which is an extension of the Bradley-Terry model
to consider the ability of evaluators, was presented by Chen
and Bennett [Chen and Bennett, 2013]. Matsui et al. pro-
posed a method to aggregate linear orders collected by using
crowdsourcing [Matsui et al., 2014]. Wu et al. proposed a
method that considers the reliability of labels annotated by
multiple evaluators [Wu et al., 2011].

There has been existing work on active learning from pair-
wise comparison data; for example, Pfeiffer et al. proposed
adaptive information aggregation method for ranking esti-
mation [Pfeiffer et al., 2012]. The criterion that they em-
ployed for active sampling is essentially same as one we

showed in Section 4.2. Brinker proposed active learning
criteria [Brinker, 2004] for both the constraint classifica-
tion [Har-Peled et al., 2002] and the pairwise decomposi-
tion [Fürnkranz and Hüllermeier, 2003] which are approaches
to reduce ranking problems to binary classification problems.
Ailon discussed theoretical guarantees of active learning for
ranking from pairwise preferences [Ailon, 2011].

7 Conclusion
We addressed the ranking estimation problem where the cost
of object evaluation is large. We proposed a new pairwise
comparison data collection method called progressive com-
parison, which reduces the number of evaluations to almost a
half of that of the ordinary pairwise comparison method. We
also proposed the active learning methods to determine which
object should be evaluated next in the progressive compari-
son. We proposed two measures of expected model changes,
one considering the changes in the evaluation score distribu-
tions and the other the changes in the winning probabilities.
The experiments demonstrated that the progressive compari-
son achieved higher estimation accuracy with a smaller num-
ber of evaluations than the standard pairwise comparison, and
the active learning methods further reduced the number of
evaluations as compared with the random sampling method,
especially for datasets with relatively clear true ranking.

In this study, we collected our crowdsourced datasets by
using the standard pairwise comparison, and simulated the
progressive comparison using them; however, it is still not
clear if such experimental arrangement is always valid be-
cause evaluations in progressive comparison are possibly bi-
ased compared with the standard pairwise comparison. Fur-
ther investigations regarding human cognition depending on
sampling methods would be required.
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