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ABSTRACT
This paper examines the notion of recommendation independence,
which is a constraint that a recommendation result is independent
from specific information. This constraint is useful in ensuring ad-
herence to laws and regulations, fair treatment of content providers,
and exclusion of unwanted information. For example, to make a
job-matching recommendation socially fair, the matching should
be independent of socially sensitive information, such as gender
or race. We previously developed several recommenders satisfying
recommendation independence, but these were all designed for a
predicting-ratings task, whose goal is to predict a score that a user
would rate. We here focus on another find-good-items task, which
aims to find some items that a user would prefer. In this task, scores
representing the degree of preference to items are first predicted,
and some items having the largest scores are displayed in the form
of a ranked list. We developed a preliminary algorithm for this task
through a naive approach, enhancing independence between a pref-
erence score and sensitive information. We empirically show that
although this algorithm can enhance independence of a preference
score, it is not fit for the purpose of enhancing independence in
terms of a ranked list. This result indicates the need for inventing a
notion of independence that is suitable for use with a ranked list
and that is applicable for completing a find-good-items task.
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1 INTRODUCTION
Recommender systems and other personalization technologies,
which help to search for items or information predicted to be useful
to a user, have become indispensable tools in support of decision-
making. To avoid unfairness or bias in the decisions supported
by recommender systems, the influence of specific information
should be excluded from the prediction process of recommendation.
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In other words, independence between recommendation results
and specific information should be maintained in the following
situations. First, recommendation services must be managed in
adherence to laws and regulations. Sweeny presented an example
of dubious advertisement placement that appeared to exhibit racial
discrimination [21]. In this case, the selection of personalized ad-
vertisements should be rendered independent of racial information.
Another concern is the fair treatment of information providers. The
Federal Trade Commission has been investigating Google to deter-
mine whether the search engine ranks its own services higher than
those of competitors [3]. In this case, no deliberate manipulation
was found. However, an algorithm that can explicitly exclude infor-
mation about whether content providers are competitors would be
helpful for alleviating users’ doubts as well as competitors’ doubts
about unfair manipulations. Finally, recommendation independence
is helpful for excluding the influence of unwanted information. Pop-
ularity bias, which is the tendency for frequently consumed items to
be recommended more frequently [2], is a well-known drawback of
recommenders. If information about popularity could be excluded,
users could acquire information free from unwanted popularity bias.
In summary, excluding the influence of specific information is help-
ful for the following purposes: adherence to laws and regulations,
fair treatment of content providers, and exclusion of unwanted
information.

To fulfill the need for excluding the influence of specific informa-
tion, we formalized a notion of recommendation independence and
developed algorithms to enhance it. For this purpose, we exploited a
technique developed for fairness-aware data mining [5, 17], whose
goal is to analyze data while taking into account potential issues of
fairness. Following the notions proposed in the previous studies,
we formally define recommendation independence as statistical
independence between a recommendation result and specified in-
formation. In addition, we developed an independence-enhanced
recommender system (IERS) that could satisfy a constraint of rec-
ommendation independence [9]. This IERS is also technically chal-
lenging and non-trivial, because while there are many techniques
for incorporating new types of information, there are very few
trials to exclude unwanted information. We developed two ap-
proaches for enhancing recommendation independence. One was
a regularization approach, which adopted an objective function
with a constraint term for imposing recommendation indepen-
dence [9, 11, 12]. The other was a model-based approach, which
adopted a generative model in which ratings and sensitive features
were independent [13].

However, all our previous methods targeted a predicting-ratings
task, predicting a score of items that a user would rate, although
there are other types of recommendation tasks. One such task is a
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find-good-items task, whose goal is to find some items that a user
would prefer [4, 8]. To complete this type of task, a system predicts
preference scores, which quantify how strongly a target user prefers
items, for every candidate item. These items are then displayed to
a target user in the form of a ranked list sorted according to the
predicted scores.

In this paper, we investigate recommendation independence for
this find-good-items task. In the case of a predicting-ratings task, we
enhanced independence between a predicted rating and a sensitive
feature. However, in the find-good-items case, the notion of inde-
pendence between a ranked list and a sensitive feature is unclear.
We therefore examine a naive approach, treating independence
between a preference score used for ranking items and a sensitive
feature. We develop a preliminary recommendation method to en-
hance this type of independence by a regularization approach. By
applying this method, we empirically inspect the independence
from a preference score or a ranked list.

Our contributions can be summarized as follows.
• We develop a preliminary recommendation method for a
find-good-items task through an approach of enhancing the
independence of a preference score from a sensitive feature.

• We empirically show that the independence of a preference
score could be enhanced without sacrificing prediction accu-
racy.

• However, our experimental results reveal that the determi-
nation as to whether items are relevant is not always inde-
pendent from a sensitive feature.

These results lead to the conclusion that we must develop a new
notion of recommendation independence fitting for a find-good-
items task.

This paper is organized as follows. In section 2, we formalize the
concept of recommendation independence and an IERS task. We
show our new method for enhancing recommendation indepen-
dence in section 3. Our experimental results are shown in section 4.
Related work is discussed in section 5, and section 6 concludes our
paper.

2 RECOMMENDATION INDEPENDENCE
This section describes a formal definition of recommendation inde-
pendence and an independence-enhanced recommendation task.

2.1 Definition
To formalize recommendation independence, we need to specify a
sensitive feature, using the terminology from studies in the fairness-
aware data mining literature [5, 17]. We can then attempt to main-
tain recommendation independence from this sensitive feature,
denoted by S . In Sweeny’s example of advertisement placement
described in section 1, racial information corresponds to a sensi-
tive feature. R represents a recommendation result, which is the
degree of relevance to a user’s preference used for sorting candidate
items in this paper. Based on information theory, the statement
“information about a sensitive feature is excluded from the predic-
tion process of the recommendation” describes the condition in
which mutual information between R and S is zero. This condi-
tion is equivalent to statistical independence between R and S , i.e.,
Pr[R] = Pr[R |S].

dislike like

(a) standard

dislike like

(b) independence enhanced

Figure 1: Distributions of the predicted preference scores for
each sensitive value

To illustrate the effect of enhancing recommendation indepen-
dence, we show distributions of predicted preference scores in
Figure 1. The charts in this figure show experimental results for
ML1M-Year data using an independence parameter, η=10. The de-
tails of the experimental conditions will be shown in section 4.
Black and gray bars show the distributions of predicted scores for
older and newer movies, respectively. In Figure 1(a), scores are pre-
dicted by a standard recommendation algorithm, and older movies
are highly rated (see the big gaps between two bars indicated by
arrowheads). When recommendation independence is enhanced
as in Figure 1(b), the distributions of scores for older and newer
movies become much closer (the large gaps are lessened); that is to
say, the predicted ratings are less affected by a sensitive feature.

We here note why a sensitive feature must be specified in the
definition of recommendation independence. In brief, a sensitive
feature must be selected because it is intrinsically impossible to per-
sonalize recommendation results if the results are independent of
all features. This is due to the ugly duckling theorem, which asserts
the impossibility of classification without weighing certain features
as more important than others [22]. Because recommendation is
considered as a task for classifying whether or not items are pre-
ferred, certain features inevitably must be weighed. Consequently,
it is impossible to enhance independence from all features equally.
In the RecSys2011 panel [18], a panelist also pointed out that no
information is neutral, and thus individuals are always influenced
by information biased in some sense.

2.2 Task Formalization
We formalize a recommendation task whose independence is en-
hanced. We previously targeted a predicting-ratings recommenda-
tion task, which predicted a ratings of items given by a user [4].
In this paper, we concentrate on a find-good-items task, whose
goal is to find some items that a user would prefer. X ∈ {1, . . . ,n}
and Y ∈ {1, . . . ,m} denote random variables for the user and item,
respectively. x and y are instances of X and Y , respectively. We
here assume that users explicitly show their preference for items.
In a predicting-ratings case, R denotes a random variable that ex-
presses the rating of an item. To fit our previous algorithms for use
with a find-good-items task, we make R denote whether an item
is relevant or irrelevant to a user. When presenting an item x to a
user y, R=1 if the item is relevant to the user; otherwise R=0. To
complete an IERS task, we additionally need a sensitive feature, S ,
from which independence will be enhanced. The domain of S is
currently restricted to a binary type, {0, 1}, for simplicity.

One training datum consists of a user, x , an item, y, a sen-
sitive value, s (an instance of S), and relevance information, r
(an instance of R). A training dataset is the set of N data, D =
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{(xi ,yi , si , ri )}, i = 1, . . . ,N . We defineD(s) as a subset consisting
of all data in D whose sensitive value is s . Given a new datum,
(x ,y, s), a preference function, r̂ (x ,y, s), predicts a preference score
of the item y for the user x . The aim of an IERS task is to learn this
preference function to predict a preference score, indicating the
degree of relevance, from a given training dataset under the con-
straint of recommendation independence. The prediction accuracy
generally decreases when an independence constraint is satisfied,
due to the loss of usable information. Therefore, it is desirable to
satisfy the constraint while sacrificing as little accuracy possible as
possible.

3 AN IERS FOR A FIND-GOOD-ITEMS TASK
This section shows a logistic probabilistic-matrix-factorizationmodel.
We then introduce an independence-enhanced variant of this model
by using a technique in [11].

3.1 A Logistic Matrix Factorization Model
We first introduce a logistic matrix factorization model for a find-
good-items task. In our previous algorithms for a predicting-ratings
task, we used a probabilistic matrix factorization (PMF) model [14].
Unlike the predicting-ratings case, a target preference, R, can take
a value of only 0 or 1 in a find-good-items case. We hence apply a
sigmoid function, which is a technique used in [19], and obtain a
preference function:

r̂ (x ,y) = sig
(
µ + bx + cy + p⊤x qy

)
, (1)

where µ, bx , and cy are global, per-user, and per-item bias param-
eters, respectively, and px and qy are K-dimensional parameter
vectors, which represent the cross effects between users and items.
sig(a) denotes a sigmoid function, 1/(1 + exp(−a)). We call this a
logistic probabilistic matrix factorization (logistic PMF) model.

3.2 An Independence-Enhanced Logistic PMF
Model

We then show an independence-enhanced variant of a logistic PMF
model. We use a regularization approach, which was originally
developed for a fairness-aware classification task [10]. In this ap-
proach, we add an independence term to impose a constraint of
recommendation independence. We advocated a simple indepen-
dence term that was designed to match two means of predicted
ratings for D(0) and D(1) [11].

We first modified a logistic PMF model (1) so that it depended
on a sensitive value. For each value of s ∈ {0, 1}, we prepared
parameter sets, µ(s), b(s)x , c(s)y , p(s)x , and q(s)y . One of the parameter
sets was chosen according to the sensitive value, and we obtained
the preference function, as follows:

r̂ (x ,y, s) = sig
(
µ(s) + b

(s)
x + c

(s)
y + p

(s)
x

⊤
q(s)y

)
. (2)

We fit this model so as to minimize the following cross-entropy loss,
instead of a squared loss used in a predicting-ratings case, because

a domain of R is restricted to 0 or 1:

loss(D) =
∑

(xi ,yi ,ri ,si )∈D

−

(
ri log r̂ (xi ,yi , si )+

(1 − ri ) log(1 − r̂ (xi ,yi , si ))
)
. (3)

Next, we introduce an independence term to impose recommen-
dation independence. This term quantifies the expected degree of
independence between a predicted preference and a sensitive fea-
ture, with larger values indicating higher levels of independence.
The independence term proposed in [11] was designed so as tomake
the two distributions Pr[R |S=0] and Pr[R |S=1] similar, because R
and S become statistically independent if Pr[R |S=0] = Pr[R |S=1].
We thus used a squared norm between the means of these distribu-
tions, and the independence term became

indep(R, S) = −

(
S(0)

|D(0) |
− S(1)

|D(1) |

)2
, (4)

where S(s) is the sum of predicted preferences over the set D(s),

S(s) =
∑
(xi ,yi ,si )∈D(s ) r̂ (xi ,yi , si ). (5)

Finally, we defined an objective function used in the regulariza-
tion approach. The objective function is the sum of a loss term (3),
an independence term (4), and an L2 regularizer:

loss(D) − η indep(R, S) + λ reg(Θ), (6)

where η > 0 is an independence parameter to balance the loss and
independence, λ > 0 is a regularization parameter, and reg(Θ) is an
L2 regularizer to avoid over-fitting. By minimizing this objective,
the parameters of models can be estimated so that the learned
prediction function makes accurate predictions and satisfies the
constraint of recommendation independence. Once the parameters
of a model are estimated, preference scores for new data can be
predicted by a prediction function (2).

4 EXPERIMENTS
We implemented the algorithm in section 3 and applied it to bench-
mark datasets to inspect the changes in accuracy and independence.
Below, we present the details of the datasets and experimental
conditions, and then provide experimental results.

4.1 Datasets
We used a Movielens 1M dataset (ML1M) [6] in our experiments.
The number of users, items, and ratings were 6, 040, 3, 706, and
1, 000, 209, respectively. We regarded a user as preferring an item if
the user gave the item a rating of 4 or higher.

We tested two types of sensitive features. The first, Year, rep-
resented whether a movie’s release year was later than 1990. We
selected this feature because it has been proven to influence pref-
erence patterns [15]. The sizes of ML1M-Year datasets whose sen-
sitive values were 0 and 1 were 456, 683 and 543, 526, respectively.
The second feature, Gender, represented the user’s gender. The
movie rating depended on the user’s gender, and our recommender
increased the independence of this information. The sizes of ML1M-
Gender datasets whose sensitive values were 0 and 1 were 753, 769
and 246, 440, respectively. Comparing these two sensitive features,
the sizes of ML1M-Year datasets divided by sensitive values were
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more balanced than those of ML1M-Gender divided by sensitive
values. The difference of original mean ratings between datasets,
D(0) and D(1), is about five times larger in the ML1M-Year dataset
than in the ML1M-Gender dataset.

4.2 Evaluation Indexes and Experimental
Conditions

Next, we evaluated our experimental results in terms of prediction
accuracy and the degree of independence. Prediction accuracy was
measured by the area under the ROC curve (AUC) [4, 8]. This index
measures how much more highly the relevant items are ranked in
a recommendation list. A larger value of this index indicates better
prediction accuracy.

We adopted two types of independence indexes. The first index
measures the degree of independence between a sensitive feature
and a preference score derived by equation (2). To evaluate the de-
gree of independence, we checked the equality of the distributions
of predicted ratings. For this purpose, we adopted the statistic of
the two-sample Kolmogorov-Smirnov test (KS), which is a nonpara-
metric test for the equality of two distributions. The KS statistic is
defined as the area between two empirical cumulative distributions
of predicted preferences for D(0) and D(1). A smaller KS indicates
that R and S are more independent.

The second type of independence indexes is designed to evaluate
the independence of a ranked list. We first assume that candidate
items whose predicted preference scores are larger than a thresh-
old are relevant items and the remaining items are irrelevant. A
random variable, R̃, represents whether an item is relevant (R̃ = 1)
or irrelevant (R̃ = 0), and r̃ denotes its instance. The degree of inde-
pendence between two binary variables, S and R̃, was evaluated by
the following two indexes. Mutual information (MI) is defined as:

MI =
∑
r̃ ∈{0,1}

∑
s ∈{0,1} Pr[r̃ , s](log Pr[r̃ , s] − log Pr[r̃ ] Pr[s]), (7)

and becomes 0 if R̃ and S are perfectly independent. Calders &
Verwer’s discrimination score (CVS) [1] is defined as the probability
of being relevant given S=0 subtracted by that given S=1,

CVS = Pr[R̃=1|S=1] − Pr[R̃=1|S=0], (8)

and becomes 0 if R̃ and S are perfectly independent.
The standard logistic PMF model and independence-enhanced

logistic PMF model in section 3 were applied to the datasets in
section 4.1. We tuned the hyper-parameters of the model so as
to optimize the AUC obtained by a standard logistic PMF model.
We used a regularization parameter, λ = 0.1, and dimension of
cross terms, K = 5. We changed an independence parameter, η,
from 10−2 to 102 and observed the accuracy and independence
indexes. We performed a five-fold cross-validation procedure to
obtain evaluation indexes for the accuracy and independence.

4.3 Experimental Results
In this experiment, we attempted to answer two questions. First,
we examined whether or not our method as described in section 3
could actually enhance recommendation independence between a
preference score and a sensitive feature. Second, in the case that
independence of a preference score was enhanced, we analyzed
whether the relevance of items was also independent.

To focus on the first question, whether our independence-
enhancement method could enhance recommendation indepen-
dence, we computed AUC and KS indexes by changing an indepen-
dence parameter, η. Additionally, we showed the means of predicted
preferences for two datasets, D(0) and D(1), in order to visualize
how two the distributions were matched. Figures 2 and 3 show the
experimental results. In terms of accuracy, Figures 2(a) and 3(a)
show that the loss in accuracy measured by the AUC was very
slight. These results were highly contrasted with those of our past
experiments, in which the increase rate of error for the predicting-
rating task was much higher. This may have been because, although
the absolute values of predicted preference scores were changed,
the relative rankings of scores among items were preserved. To
examine this hypothesis, we compared pairs of predicted scores
derived by our algorithms whose independence parameters were
η = 0.01 and η = 10. The means of absolute differences were 0.053
(Year) and 0.025 (Gender), clearly indicating that the predicted
scores were changed. Rank correlations (Spearman’s ρ) between
pairs of scores were extremely high, 0.978 (Year) and 0.990 (Gender).
This observation means that the relative rankings among predicted
scores were almost completely preserved, even if recommenda-
tion independence was enhanced, and thus the AUCs were not
decreased because an AUC index was invariant for any monotonic
transformations.

On the other hand, the independence between a predicted pref-
erence score and a sensitive feature was clearly enhanced in Fig-
ure 2(b). This claim could also be confirmed by the observation
that the means of scores derived from D(0) and D(1) were made
increasingly equal by increasing the parameter η in Figure 2(c). In
Figure 3(b), it was unclear whether or not the index decreased, be-
cause the KS statistics were initially small. However, the matching
of the two means in Figure 3(c) proved that the independence was
enhanced. From the above, it may be concluded that recommenda-
tion independence of a preference score could be enhanced by our
logistic PMF model, while the loss in accuracy was very slight.

We were thus able to confirm that the independence of a pref-
erence score, R, was enhanced. Next, we moved on to the second
question, concerning the independence of the relevance of items
from a sensitive feature. As described in section 4.2, we predicted
preference scores for all user-item pairs in a dataset in a 5-fold cross-
validation procedure, then ranked these items according as their
scores are in descending order. In a find-good-items case, the top-k
ranked items were assumed to be relevant, and were displayed to
users. Hence, we have to take into account the enhancement of
independence between a sensitive feature and an event whether
a recommended item was relevant (R̃=1) or irrelevant (R̃=0). We
then examine whether or not the enhancement between R and S
could enhance the independence between R̃ and S . To examine the
independence, we computed the independence indexes as shown
in equations (7) and (8) at various threshold of k . Figures 4 and 5
show the changes in the independence indexes according to the
number of relevant items, k . By enhancing the independence of
preference scores, the independence in regard to relevance was
also enhanced for most of the values of k , when compared with a
standard recommender. However, the independence of relevance
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Figure 2: Changes of accuracy and independence indexes for theML1M-Year dataset
NOTE : These figures show the changes of indexes according to an independence parameter, η. The X-axes represent the independence parameter in
a logarithmic scale. The Y-axis of the subfigure (a) shows an AUC index to evaluate prediction accuracy. The Y-axis of the subfigure (b) shows the
Kolmogorov-Smirnov (KS) statistic to evaluate recommendation independence. Larger AUC indicates better performance in accuracy, and smaller KS
indicates better performance in independence. Subfigure (c) shows the means of predicted preference scores for the datasets, D(0) and D(1).
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Figure 3: Changes of accuracy and independence indexes for theML1M-Gender dataset
NOTE : See the note for Figure 2.
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Figure 4: Changes of independence between R̃ and S for the
ML1M-Year dataset
NOTE : These figures show the changes of independence indexes accord-
ing to the number of relevant items. The X-axes represent the number of
relevant items, k . The Y-axis of the subfigure (a) shows mutual informa-
tion (equation (7)). Blue broken lines show the changes of independence
obtained by a standard recommendation algorithm, and red solid lines
show the changes obtained by our independence-enhanced recommen-
dation algorithm. A relevance variable, R̃ , and a sensitive feature, S , are
completely independent if the mutual information is zero. The Y-axis
of the subfigure (b) shows Calders and Verwer’s discrimination indexes
(equation (8)). These indexes are exactly zero if R̃ and S are independent.

was not enhanced for small k in both datasets and indexes. Unfor-
tunately, because users cannot check many items, independence
for small k is very important. Therefore, this failure to enhance
independence was a serious issue. From this experiment, the en-
hancement of independence in regard to preference scores did not
always enhance independence of relevance.
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Figure 5: Changes of independence between R̃ and S for the
ML1M-Gender dataset
NOTE : The note for Figure 4 applies, except that the scaling of Y-axes
is changed to clarify the differences of independence indexes.

The experimental results could be summarized as follows:

• Our algorithm could successfully enhance independence be-
tween a preference score and a sensitive feature, without ap-
preciably decreasing the accuracy compared to a predicting-
ratings case.

• The independence in terms of relevance might not always
be enhanced by enhancing the independence of a preference
score.

From these experimental results, we conclude that a method must
be specially designed to enhance independence between item rele-
vance and sensitive information.
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5 RELATEDWORK
We wish to emphasize that recommendation independence is dis-
tinct from recommendation diversity [16, 23]. First, while diversity
may be the property of a set of recommendations, independence is
a relation between each recommendation and a sensitive feature.
Second, recommendation independence depends on the specifica-
tion of a sensitive feature, while recommendation diversity depends
on the specification of a similarity metric between a pair of items.
Finally, while diversity seeks to provide a wider range of topics,
independence seeks to provide unbiased information.

We adopted techniques for fairness-aware data mining to en-
hance the independence. Fairness-aware data mining is a general
term for mining techniques designed so that sensitive information
does not influence the mining results. Pedreschi et al. first advo-
cated such mining techniques, which emphasized the unfairness
in association rules whose consequents include serious determina-
tions [17]. Another technique of fairness-aware data mining focuses
on predictions designed so that the influence of sensitive informa-
tion on the predictions is reduced [1, 10]. These techniques would
be directly useful in the development of an independence-enhanced
variant of content-based recommender systems, because content-
based recommenders can be implemented by standard classifiers.
Specifically, class labels indicate whether or not a user prefers an
item, and the features of objects correspond to features of the item.

The concept behind recommendation transparency is that it
might be advantageous to explain the reasoning underlying individ-
ual recommendations. Indeed, such transparency has been proven
to improve the satisfaction of users [20], and different methods
of explanation have been investigated [7]. In the case of recom-
mendation transparency, the system tries to persuade users of its
objectivity by demonstrating that the recommendations were not
made by any malicious manipulations. On the other hand, in the
case of independence, the objectivity is guaranteed by satisfying a
previously defined regulation, i.e., recommendation independence.

6 CONCLUSIONS
We previously developed a method to enhance recommendation
independence for a predicting-ratings task. In this paper, we exam-
ined recommendation independence for a find-good-items task. We
designed a new model to enhance independence of a predicted pref-
erence score from a sensitive feature. We empirically showed that
this model could enhance independence from a preference score,
but the losses in accuracy were very slight. We further examined
independence in terms of the relevance of recommended items, but
this type of independence sometimes failed to be enhanced.

There are many functionalities required for an IERS. From our
experimental results, we must consider a new notion of recommen-
dation independence in terms of a ranked recommendation list for
a find-good-items task. Because in this paper we assumed that users
explicitly rate the relevance of items, we have to develop a method
applicable to the case of implicit ratings. However, it would be dif-
ficult to select which items should be treated as irrelevant, because
such selection would influence the state of independence. Bayesian
extension would not be straightforward because the parameters
are probabilistically generated and recommendation independence
might be violated under specific choices of parameters. Because

sensitive features are currently restricted to binary types, we will
try to deal with sensitive features whose types are multivariate
discrete or continuous.
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