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Abstract The goal of fairness-aware classification is to categorize data while taking
into account potential issues of fairness, discrimination, neutrality, and/or indepen-
dence. For example, when applying datamining technologies to university admissions,
admission criteriamust be non-discriminatory and fairwith regard to sensitive features,
such as gender or race. In this context, such fairness can be formalized as statistical
independence between classification results and sensitive features. The main purpose
of this paper is to analyze this formal fairness in order to achieve better trade-offs
between fairness and prediction accuracy, which is important for applying fairness-
aware classifiers in practical use. We focus on a fairness-aware classifier, Calders and
Verwer’s two-naive-Bayes (CV2NB) method, which has been shown to be superior to
other classifiers in terms of fairness. We hypothesize that this superiority is due to the
difference in types of independence. That is, because CV2NB achieves actual inde-
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pendence, rather than satisfying model-based independence like the other classifiers,
it can account for model bias and a deterministic decision rule. We empirically vali-
date this hypothesis by modifying two fairness-aware classifiers, a prejudice remover
method and a reject option-based classification (ROC) method, so as to satisfy actual
independence. The fairness of these two modified methods was drastically improved,
showing the importance of maintaining actual independence, rather than model-based
independence. We additionally extend an approach adopted in the ROCmethod so as
to make it applicable to classifiers other than those with generative models, such as
SVMs.

Keywords Fairness · Discrimination · Classification · Cost-sensitive learning

1 Introduction

The goal of fairness-aware data mining is to analyze data while taking into account
potential issues of fairness, discrimination, neutrality, and/or independence. Tech-
niques of fairness-aware data mining are helpful for avoiding unfair treatments as
follows. Data mining techniques are increasingly being used for serious decisions
that affect individual’s lives, such as decisions related to credit, insurance rates, or
employment applications. For example, credit decisions are frequently made based
on past credit data together with statistical prediction techniques. Such decisions are
considered unfair in both a social and legal sense if they have been made with ref-
erence to sensitive features such as gender, religion, race, ethnicity, disabilities, or
political convictions. Pedreschi et al. (2008) were the first to propose the concept of
fairness-aware data mining to detect such unfair determinations. Since the publication
of their pioneering work, several types of fairness-aware data mining tasks have been
proposed.

In this paper, we discuss fairness-aware classification, which is a major task of
fairness-aware data mining. Its goal is to design classifiers while taking fairness in the
prediction of a class into account. Such fairness can be formalized based on indepen-
dence or correlation between classification results and sensitive features. In general,
some degree of prediction accuracy must be sacrificed to satisfy a fairness constraint.
However, if a predictor violates the constraint, the predictor cannot be deployed in
the real world, because social demands, such as equality of treatment, should not
be ignored. Even though a predictor can classify accurately, if it violates a fairness
constraint, it does not truly perform the classification task from a social perspective.
Therefore, it is important to improve the trade-off between fairness and accuracy in
order that a fairness-aware classifier can effectively predict under a specified fairness
constraint in practical use.

The main purpose of this paper is to discuss the theoretical background of formal
fairness in classification, and to identify important factors for achieving a better trade-
off between accuracy and fairness. We here focus on Calders and Verwer’s two-naive-
Bayes (CV2NB) method (Calders and Verwer 2010), which is a pioneering fairness-
aware classifier. This CV2NB classifier has achieved a high level of fairness, as we
will show in our experimental section. We analyze this method and hypothesize that
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the effects of model bias and a deterministic decision rule are essential for improving
fairness–accuracy trade-offs.

We introduce two important factors: model bias and the deterministic decision
rule. Model bias is the degree of difference between a true distribution to fit and
an estimated distribution represented by a model of a classifier, and such bias has
been well discussed in the context of bias-variance theory (Bishop 2006, Sect. 3.2). A
fairness constraintmust be satisfiedbasedon a sensitive feature and the true distribution
of a class. However, if we use a distribution restricted by a model instead of a true
distribution, the satisfied fairness constraint diverges from the constraint that we have
to satisfy. Hence, model bias may damage the fairness of the learned classifier. A
deterministic decision rule is another factor that can worsen the quality of fairness.
Once class posteriors or decision functions of a classifier are learned, a class label for
a new instance is deterministically chosen by applying a decision rule. For example, a
class whose posterior is maximum among a set of classes is deterministically chosen
to minimize the risk of misclassification (Bishop 2006, Sect. 1.5). If we assume that
classes are probabilistically generated according to a class posterior when designing
a fairness-aware classifier, the class labels that are actually produced will deviate
from the expected ones. This deviation worsens the quality of fairness. For these
two reasons, the influence of model bias and a deterministic decision rule must be
carefully maintained in order to satisfy a fairness constraint with the least possible
loss of a classifier.

Our first contribution is to distinguish notions of two types of independence: model-
based independence and actual independence. Model-based independence is defined
as statistical independence between a class and a sensitive feature following a model
distribution of a classifier. On the other hand, in the case of actual independence, the
effects of model bias and a deterministic rule are considered in the context of a fairness
constraint. We formally state these two types of independence, which are important
in a context of fairness-aware data mining.

Our second contribution ismodifying two existing fairness-aware classifiers so as to
satisfy actual independence in order to validate the above hypothesis. Thefirst classifier
is our logistic regressionwith a prejudice remover regularizer (Kamishima et al. 2012),
which was originally designed to satisfy a model-based independence condition. The
second classifier is a reject option-based classification (ROC) method (Kamiran et al.
2012), which changes decision thresholds according to the values of sensitive features.
Though the degree of fairness is adjusted by a free parameter in the original method,
we here develop a method to find settings of parameters so that the resultant classifiers
respectively satisfy model-based independence and actual independence conditions.
By comparing the performance of classifiers satisfying model-based and actual inde-
pendence, we validate the hypothesis that the effects of model bias and a deterministic
rule cannot be negligible.

Our final contribution is to extend an approach adopted in the ROC method so as
to make it applicable to classifiers beyond those with generative models. Any type of
classifier, such as those with discriminative models or discriminant function, can be
modified so as to make fair decisions using this extension technique.

Our contributions are summarized as follows:
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– We propose notions of model-based and actual independence, the difference
between which is an essential factor for improving trade-offs between the fair-
ness and accuracy of fairness-aware classifiers.

– We empirically show that the fairness of classifiers was drastically improved by
modifying them to satisfy actual independence. This fact validates the importance
of the difference between the two types of independence.

– We extend an approach adopted in the ROCmethod so as to make it applicable to
any type of classifiers.

This paper is organized as follows. In Sect. 2, we briefly review the task of fairness-
aware classification. In Sect. 3, after introducing theCV2NBmethod, we examine the
reasons for the superiority of theCV2NBmethod and propose notions of model-based
and actual independence. In Sects. 4 and 5,we respectivelymodify a prejudice remover
regularizer and theROCmethod so as to satisfy actual independence.We also show an
extension of theROCmethod in Sect. 5. Section 6 empirically shows the superiority of
classifiers satisfying an actual independence condition, which validates our hypothesis
that the effects ofmodel bias and a decision rule are significant. Section 7 covers related
work, and Sect. 8 concludes our paper.

2 Fairness-aware classification

This section summarizes the concept of fairness-aware classification. Following the
definitions of notations and tasks, we introduce a formal notion of fairness.

2.1 Notations and task formalization

The goal of fairness-aware data mining is to analyze data while taking into account
potential issues of fairness. Formal tasks of fairness-aware datamining can currently be
classified into two groups: unfairness discovery and unfairness prevention (Ruggieri
et al. 2010). We here focus on fairness-aware classification, which is a major task
of unfairness prevention. The goal of fairness-aware classification is to categorize
data while simultaneously taking into account issues or potential issues of fairness,
discrimination, neutrality, and independence. Three types of variables, Y , X, and S,
are considered in fairness-aware classification. The random variables S and X denote
a sensitive feature and a set of non-sensitive features, respectively. A sensitive feature
represents informationwith respect towhich fairnessmust bemaintained. For example,
in the case of avoiding discrimination in credit decisions, a sensitive feature might
correspond to gender, religion, race, or someother characteristic specified froma social
or legal viewpoint, and credit decisions must be fair in terms of these features. Non-
sensitive features,X, consist of all other features.X is composedofm randomvariables,
X (1), . . . , X (m). The randomvariableY denotes a class variable that represents a class,
such as the result of a credit decision.

In this paper, we restrict the types of random variables because many problems of
fairness in data mining are still unsolved even for such a restricted and simple case. A
class variable Y represents a binary class. The class, 0 or 1, signifies an unfavorable
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Fig. 1 Geometrical view of distributions over (Y,X, S)

or favorable outcome, such as denial or approval of a credit request, respectively. S is
also restricted to a binary variable. An object whose sensitive value is 1 or 0 is said to
be in a non-protected or protected state, respectively. A protected object represents an
individual or entity that should be protected from socially unfair treatment. The group
of all objects that correspond to individuals who are in a protected state constitutes
a protected group, and the rest of the objects comprise an unprotected group. The
above assumptions are rather restrictive in terms of sensitive features, but even in this
restricted and simplified case, the problem of accuracy–fairness trade-offs is not fully
resolved. In addition, even if a sensitive feature is single and binary, a fairness-aware
classifier can be applied to follow a specific regulation, such as the EU Racial Equality
Directive. The extension to cases in which a sensitive feature is multivariate and/or
continuous is a problem for future discussion.

We next define notations of probability distributions over the space (Y,X, S). Fig-
ure 1 depicts a geometrical view of the distributions. We first introduce distributions
that are also managed in a standard machine learning process. These distributions are
depicted in the left half of Fig. 1. Each object is represented by a pair of instances,
(x, s), which are generated from a true distribution. Given the object, the correspond-
ing class instance value, y, is generated from a true distribution, Pr[Y |X=x, S=s]. It
should be noted that this true distribution may lead to a potentially unfair decision that
depends on a sensitive feature, S. The true joint distribution, Pr[Y,X, S], is in a family
of all distributions over (Y,X, S), which corresponds to the entirety of Fig. 1. We
cannot know the true distribution itself, but we can observe data sampled from the true
distribution. These data comprise a (training) dataset,D = {(yi , xi , si )}, i = 1, . . . , n.
We additionally define Ds as a subset that consists of all the data in D whose sensi-
tive value is s. A family of model distributions, P̂r[Y,X, S], is also given. Joint model
distributions are on a model sub-space, depicted by a horizontal plane in Fig. 1. Exam-
ples of model distributions are naive Bayes or logistic regression. Note that because
the true distribution is not on the model sub-space in general, the problem of model
bias arises, as we will discuss in Sect. 3.2.1. Given a training dataset, the goal of the
standard classification problem is to specify the model distribution that would best
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approximate a true distribution among all candidate model distributions on the model
sub-space.

Next, we turn to distributions that are particularly required to maintain fairness in
classification. A fairness constraint is assumed to be formally specified, and a set of all
distributions satisfying the fairness constraint constitutes a fair sub-space, Pr◦[Y,X, S],
depicted by a vertical plane in Fig. 1. In this paper, we mainly discuss a fairness
constraint formalized as unconditional independence between a class variable, Y , and
a sensitive feature, S, as in the next Sect. 2.2. In this case, a fair sub-space is equivalent
to a set of all distributions satisfying the independence condition. The intersection of
the fair sub-space and a model sub-space is a fair model sub-space, which consists
of all candidate estimated fair distributions, P̂r◦[Y,X, S], as depicted by a thick line
in Fig. 1. Given a training dataset, the goal of fairness-aware classification is to find
the fair model distribution that would best approximate a true distribution among all
candidate distributions on the fair model sub-space.

2.2 Fairness in classification

Here we review formal definitions of fairness in classification. Though many types
of fairness have been proposed, we will highlight a few representative examples.
First, conditional independence, Y ⊥⊥ S | X, corresponds to the simple elimination
of a sensitive feature. Note that A ⊥⊥ B denotes the (unconditional) independence
between variables A and B, and A ⊥⊥ B | C denotes the conditional independence
between A and B givenC . The simple elimination of a sensitive feature fromprediction
models is insufficient for avoiding an inappropriate determination process because of
the indirect influence of sensitive information. Such a phenomenon is called a red-
lining effect (Calders and Verwer 2010). An example of a red-lining effect in online
ad delivery has been reported (Sweeney 2013). When a full name is used as a query
for a Web search engine, online ads with words indicating arrest records will be
more frequently displayed for first names that are more common among individuals
of African descent than individuals of European descent. In this delivery system, no
information about the race or actual first name of users is exploited intentionally.
Rather, the online ads are unfairly delivered as the result of automatic optimization of
the click-through rate based on the feedback of users.

We next focus on unconditional independence, Y ⊥⊥ S. This condition must be
satisfied to avoid the red-lining effect, as shown below. Consider a simple regression
case such that Y = X+εX and S = X+εS , where εX and εS aremutually independent
Gaussian noises. A condition Y ⊥⊥ S | X is satisfied because Gaussian noises, εX
and εS , are independent if X is observed. However, the red-lining effect is caused
because both variables, Y and S, depend on a common variable, X . As observed in this
example, Y and S must not depend on any common variables, and thus unconditional
independence Y ⊥⊥ S must be satisfied, to avoid the red-lining effect. We would like
to note that this fairness condition implies the assumption that class labels of a training
dataset may be unfair or unreliable due to unfavorable decisions that have been made
for people in a protected group. Fairness conditions which assume that training labels
are fair have been discussed in Hardt et al. (2016), Zafar et al. (2017).
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To represent a fairness constraint in formulae, a fairness index to measure the
degree of fairness, such as Y ⊥⊥ S, is introduced. Many types of fairness indices
have been proposed: discrimination score (Calders and Verwer 2010), mutual infor-
mation (Kamishima et al. 2012), χ2-statistics (Berendt and Preibusch 2012; Sweeney
2013), η-neutrality (Fukuchi et al. 2013), neutrality risk (Fukuchi and Sakuma 2014),
and a combination of statistical parity and the Lipschitz condition (Dwork et al.
2012; Zemel et al. 2013). Note that a previously published tutorial (Hajian et al.
2016) provides a good survey of these indices. If these fairness indices are worse than
a pre-specified level, the corresponding decisions are considered unfair.

3 Analysis of fairness in classification

We first review the CV2NBmethod, which achieves a better accuracy–fairness trade-
off, as shown in experimental Sect. 6.2.We then hypothesize that this superiority is due
to the effects of model bias and a deterministic decision rule being taken into account.
Based on this hypothesis, we here formalize the notions of model-based independence
and actual independence.

3.1 Calders and verwer’s two-naive-bayes

We introduce Calders and Verwer’s two-naive-Bayes method (CV2NB) (Calders and
Verwer 2010), which achieves better trade-offs between accuracy and fairness than
other fairness-aware classifiers. The generative model of this method is

P̂r[Y,X, S] = P̂r[Y |S] P̂r[S]∏k P̂r[X (k)|Y, S]. (1)

In a standard naive Bayes model, each X (k) depends only on Y ; in the CV2NBmodel,
it also depends on S. Note that this method was named “two-naive-Bayes” because it
is as if a distinct naive Bayes classifier is learned for each sensitive value. To make
classification fair, a joint distribution P̂r[Y, S] = P̂r[Y |S] P̂r[S] is modified by the
post-processing algorithm shown in Algorithm 1, and the modified distribution is
denoted by P̂r◦[Y, S]. After the algorithm is stopped, a model parameter P̂r◦[y, s] can
be induced from N (y, s), y, s∈{0, 1}, which are the virtual counts of data of Y=y and
S=s. A fair model distribution can be obtained by replacing P̂r[Y |S] P̂r[S] in Eq. (1)
with the distribution P̂r◦[Y, S].

This post-processing algorithm was designed to modify the original model so as to
satisfy two conditions: (a) fairness in classification, and (b) preservation of a class dis-
tribution. First, to satisfy the fairness condition, the post-processing algorithm adopts
Calders-Verwer’s discrimination score (CVS) as a fairness index. This score is defined
by subtracting the probability that protected objects will get favorable treatment from
the probability that unprotected objects will:

CVS(Y, S) = P̂r[Y=1|S=1] − P̂r[Y=1|S=0]. (2)
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Algorithm 1 A post-processing algorithm for a CV2NB model
Require: N (Y, S) (the counts of samples of Y=y and S=s in training data)
1: disc ← a CVS of the predicted classes by the current model
2: while disc > 0 do
3: numpos ← the number of positively classified samples by the current model
4: if numpos < the number of positive samples in D then
5: N (Y=1, S=0) ← N (Y=1, S=0) + �N (Y=0, S=1)
6: N (Y=0, S=0) ← N (Y=0, S=0) − �N (Y=0, S=1)
7: else
8: N (Y=0, S=1) ← N (Y=0, S=1) + �N (Y=1, S=0)
9: N (Y=1, S=1) ← N (Y=1, S=1) − �N (Y=1, S=0)
10: if Any entry of N (Y, S) is negative then
11: cancel the previous update of N (Y, S) and abort

12: Recalculate P̂r[Y |S], a CVS, and disc, based on updated N (Y, S)

NOTE:� is a small positive parameter and was set to 0.01 as in the original paper. We slightly modified
the original algorithm by adding lines 10–11, which guarantees that N (Y, S) will be non-negative.

Note that P̂r[Y=1|S=s] is obtained by marginalizing P̂r[Y=1|X, S=s] P̂r[X|S=s]
overX. It is easy to show that when both Y and S are binary, the zeroCVS implies that
Y and S are unconditionally independent, Y ⊥⊥ S. Lines 5–6 and 8–9 in Algorithm 1
are designed so that the CVS of the resulting distribution approaches zero. The main
loop of this algorithm exits at line 2 if the resultant CVS is closer to zero than a small
threshold. Therefore, the resulting distribution P̂r◦[Y, S] satisfies the independence
condition between Y and S. In terms of the second condition, the modified class
distribution is kept close to the original one, i.e., P̂r◦[Y ] ≈ P̂r[Y ] in line 4. However,
because the marginal distribution of Y is not considered in the stopping criterion in
line 2, the resultant distribution of Y does not always equal the sample distribution of
Y .

As proved in our experimental Sect. 6, the CV2NBmethod is highly efficient; that
is to say, this classifier can precisely and fairly predict class labels. We next discuss
the reason for this superiority.

3.2 Why is the CV2NB method superior?

CV2NB tends to achieve better trade-offs between accuracy and fairness, even though
the other models explicitly impose fairness constraints. We hypothesized two rea-
sons for this. The first is model bias, which makes an estimated distribution different
from a true distribution. The second reason is a deterministic decision rule. Though
class labels are in fact chosen according to a deterministic decision rule, non-CV2NB
methods assume that the labels are probabilistically generated.

3.2.1 Model bias

We first analyze how model bias damages fairness. In the non-CV2NB cases, class
labels are predicted based on an estimated distribution, P̂r[Y |X, S], while the objects
to be classified are generated according to a true distribution, Pr[X, S]. The estimated
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distribution is generally different from the true distribution because the estimated
distribution must lie in the model sub-space; this restriction is not relevant to a true
distribution. When learning models, random variables following estimated distribu-
tions,Y and S, are constrained to be independent, and a joint distribution over (Y,X, S)

becomes P̂r[Y ] P̂r[S] P̂r[X|Y, S]. Hence, the joint distributions over (Y,X, S) disagree
between the case of learning models and that of making a prediction as follows:

P̂r[Y |X, S]Pr[X, S] �= P̂r[Y ] P̂r[S] P̂r[X|Y, S]. (3)

On the other hand, in the CV2NB case, the distribution of class labels is approx-
imated by a sample mean. Specifically, in Algorithm 1, line 12, an empirical
distribution, which approximates a true distribution, is adopted as a joint distribu-
tion of Y and S. Therefore, the CV2NB method can avoid the effect of model bias on
its fairness.

3.2.2 A deterministic decision rule

We next discuss the effect of a deterministic decision rule on the choice of class labels.
Independence between a class variable and a sensitive feature is satisfied if the distri-
bution of actual class labels equals that induced from a probabilistic model. In other
words, labels are assumed to be chosen probabilistically. However, this assumption
is not the case because actual labels, ỹ, are deterministically chosen by the following
decision rule:

ỹ = argmaxy P̂r[Y = y|X = x, S = s]. (4)

We next examine how greatly the distribution of actual class labels determined
by a decision rule diverges from that of labels probabilistically generated by a pre-
diction model. We here consider a very simple model with a binary class variable,
Y , and one binary feature variable, X . The class prior distribution follows a discrete
uniform distribution, i.e., P̂r[Y=1] = 0.5. Two other parameters, P̂r[X=1|Y=0] and
P̂r[X=1|Y=1], are required to represent the joint distribution of X and Y . In this case,
E[Y ] becomes a constant, 0.5, if Y follows the distribution induced from this model.
We then consider the variable Ỹ to represent actual labels determined by Eq. (4). In
Fig. 2, we depict the variation of the expectation E[Ỹ ] according to the changes of
P̂r[X=1|Y=0] and P̂r[X=1|Y=1]. Surprisingly, the condition E[Y ] = E[Ỹ ] is satis-
fied only if P̂r[X=1|Y=0] + P̂r[X=1|Y=1] = 1 (depicted by the thick broken line
in Fig. 2). As a result, the two variables Y and Ỹ behave differently at almost every
point.

We next demonstrate how heavily the difference between Y and Ỹ worsens fairness
in classification. To this end, we evaluate the degrees of two kinds of independence,
Y ⊥⊥ S and Ỹ ⊥⊥ S. We use another simple generative model with a single non-
sensitive variable:

Pr[Y, X, S] = Pr[X |Y, S]Pr[Y ]Pr[S]. (5)

Clearly, Y and S are mutually independent. All variables are binary, and we fixed the
parameters: Pr[S=1] = 0.9, and
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Fig. 3 Degrees of independence
according to the changes of
Pr[Y=1]

Pr[X=1|Y=0, S=0] = 0.2 Pr[X=1|Y=0, S=1] = 0.3

Pr[X=1|Y=1, S=0] = 0.5 Pr[X=1|Y=1, S=1] = 0.4.

The last parameter, Pr[Y=1], was changed from 0 to 1. The expectation of differences,
E[Pr[Y, S] − Pr[Y ]Pr[S]], is used to evaluate the degree of independence between S
and Y , a probabilistically generated class. The expectation is constantly zero due to
the independence property between Y and S, irrespective of the value of Pr[Y=1].
We next examine the independence between S and Ỹ , which represents a class label
obtained by the application of Eq. (4); the expectation E[Pr[Ỹ , S] − Pr[Ỹ ]Pr[S]] is
plotted in Fig. 3. This figure shows that Ỹ is independent of S at only three points. This
is in strong contrast to the stationary independence between Y and S when class labels
are probabilistically generated. This example proves that considering the influence of
a deterministic decision rule is essential for fairness in classification.
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Fig. 4 Geometrical view of two types of independence

Non-CV2NB methods adopt an assumption that class labels are probabilistically
generated, and the effect of a decision rule is ignored. In theCV2NBmethod, fair labels
are determined and maintained based on the independence of sensitive features from
actual labels, which is not possible for labels induced from a probabilistic prediction
model.

3.3 Model-based independence and actual independence

Based on the above discussion of the influences of model bias and a deterministic
decision rule, we here formalize the notions of model-based independence and actual
independence. Figure 4 shows the sub-spaces required for these two types of inde-
pendence. A common model sub-space, P̂r[Y,X, S], depicted by the horizontal plane
in the figure, is shared in both types of independence. On the other hand, as depicted
by the two vertical planes in the figure, there are two distinct fair sub-spaces. The
two fair sub-spaces are the same from the standpoint that they satisfy unconditional
independence between a class variable and a sensitive feature, but their distributions
generating class labels differ. In the case ofmodel-based independence, class labels are
directly generated from a distribution on the model-subspace. However, in the case of
actual independence, class labels are generated from a distribution induced by taking
into account the influence of model bias and a decision rule in the real world. For each
type of independence, we provide a procedure to derive the distributions generating
class labels in cases of classifiers with a generative model and a discriminative model
(Bishop 2006, Sect. 1.5.4).

3.3.1 Model-based independence

The constraint of model-based independence is defined as independence between a
class variable and a sensitive feature, and class labels are generated from a model
distribution on a model sub-space. Formally, the constraint is defined as
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Y ⊥⊥ S, where (Y, S) ∼ P̂r◦[Y, S]. (6)

P̂r◦[Y, S] is directly induced by marginalizing a model distribution, P̂r[Y,X, S], over
X.We show the details of thismarginalization process for the cases inwhich a classifier
is a generative model or a discriminative model.

We first show the case in which the classifier is a generative model, whose joint
distribution of a class and features, P̂r[Y,X, S], is given. Non-sensitive features, X,
are marginalized by integrating out from the joint distribution, and we get

P̂r◦[Y, S] =
∫

x∈dom(X)

P̂r[Y, x, S]dx. (7)

In this generative case, the influence of model bias and a deterministic rule is not
considered, as it was in Sect. 3.2.

We next turn to a discriminative model, in which a conditional distribution,
P̂r[Y |X, S], is directly parameterized. We want to obtain a joint distribution,
P̂r[Y,X, S], but this is impossible due to the lack of a model for the distribution
of X and S. Hence, a sample mean is used for approximating the expectation over X,

P̂r◦[Y, S] ≈ |Ds |
n

1

|Ds |
∑

x∈Ds

P̂r[Y |X=x, S=s] = 1

n

∑

x∈Ds

P̂r[Y |X=x, S=s]. (8)

Because we use a sample mean approximating the true distribution in this discrimi-
native case, the model bias is removed, and only the influence of a decision rule is
ignored.

As wewill show in Sect. 6, classifiers satisfying this model-based independence are
poor in fairness evaluation indexes; this is due to unrealistic assumptions.Model-based
independence can be considered as a valid fairness constraint. However, the assump-
tions adopted in this constraint don’t match the practical use of classifiers. Specifically,
this constraint is assumed to ignore the influences of model bias and a deterministic
decision rule, as discussed in the previous section. Therefore, we introduce another
constraint based on a more realistic assumption.

3.3.2 Actual independence

The constraint of actual independence is the same as that of a model-based inde-
pendence in the respect that they are both independence constraints between a class
variable and a sensitive feature. The key difference lies in the distributions used to
generate class labels. Specifically, class labels are generated not from a model distri-
bution, P̂r[Y,X, S], but from another distribution induced from the model distribution.
The induced distribution is designed by taking into account the influences of model
bias and a decision rule in the real world. The constraint of actual independence is
formally defined as:

Ỹ ⊥⊥ S, where (Ỹ , S) ∼ P̂r◦[Ỹ , S]. (9)
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A deterministic class variable, Ỹ , is generated from a distribution, P̂r◦[Ỹ , S], which
is induced from a model distribution. Below, we describe the details of the method
used to induce the distribution, P̂r◦[Ỹ , S], in the cases of a generative model and a
discriminative model.

We begin with the case of a generative model. We design P̂r◦[Ỹ , S] so that it can
consider the influence of model bias and a decision rule. P̂r◦[Ỹ , S] is derived from
P̂r[Ỹ ,X, S]. To remove the model bias, we avoid the use of a given model distribution,
P̂r[Y,X, S]. As discussed in Sect. 3.2.1, model bias is problematic because of the dif-
ference between the distributions used in the learning and prediction stages. Hence, we
adopt a distribution used in the prediction stage, P̂r[Ỹ ,X, S] = P̂r[Ỹ |X, S]Pr[X, S],
which is the left-hand side of Eq. (3). Expectation over the true distribution of X is
approximated by a sample mean as in Eq. (8):

P̂r◦[Ỹ , S] = 1

n

∑

x∈Ds

P̂r[Ỹ |X=x, S=s]. (10)

All that we have to do is induce the distribution, P̂r[Ỹ |X, S], to generate deterministic
class labels from a model distribution. Here, because we have to remove the influence
of a decision rule, this distribution is obtained by applying a decision rule:

⎧
⎪⎨

⎪⎩

P̂r[Ỹ=1|x, s] =
{
1, if P̂r[Y=1, x, s] ≥ P̂r[Y=0, x, s]
0, otherwise

P̂r[Ỹ=0|x, s] = 1 − P̂r[Ỹ=1|x, s]
, (11)

where P̂r[Y,X, S] is a generative model on a model sub-space.
In the case of a discriminative model, the derivation procedure of P̂r◦[Ỹ , S] is the

same as for the generative model, except that P̂r[Ỹ |X, S] is not obtained by Eq. (11).
The distribution is again derived by applying a decision rule:

⎧
⎪⎨

⎪⎩

P̂r[Ỹ=1|x, s] =
{
1, if P̂r[Y=1|x, s] ≥ P̂r[Y=0|x, s]
0, otherwise

P̂r[Ỹ=0|x, s] = 1 − P̂r[Ỹ=1|x, s]
, (12)

where P̂r[Y |X, S] is a discriminative model on a model sub-space. Note that the distri-
butions including Ỹ are not members of a fair sub-space, but these distributions exist
somewhere in a space represented by Fig. 4. These distributions are merely exploited
to examine the independence between Ỹ and S. A fair sub-space for actual indepen-
dence consists of all distributions over (Y,X, S) that are used to induce P̂r[Y |X, S] in
Eqs. (11) and (12), and the induced distributions satisfy the condition (9).

As described above, the key difference between the two types of fairness constraints,
model-based independence and actual independence, is the difference in the distribu-
tions to generate class labels. In order to show that the difference of these fairness
constraints is important for fairness-aware classification, we then modify two existing
fairness-aware classifiers so as to satisfy these fairness constraints.
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4 A prejudice remover regularizer

We introduce a prejudice remover regularizer that constrains a model-based indepen-
dence condition. This term is then modified so as to satisfy an actual independence
constraint.

We first describe an original form of logistic regression with a prejudice remover
regularizer (Kamishima et al. 2012) (a PR method, for short). An objective function
of this method is derived by adding a constraint term enhancing the fairness to an
objective function of logistic regression. Logistic regression is a prediction model:

P̂r[y|x;w] = y sig(x
w) + (1 − y)(1 − sig(w
x)), (13)

where sig(·) is a sigmoid function and w is a weight parameter vector. To develop a
prediction model that is dependent on a sensitive feature, a logistic regression model
is used for each value of the sensitive feature:

P̂r[y|x, s] = P̂r[y|x;w(s)].

Weight parameters are required for each sensitive value, w(s), s ∈ {0, 1}. In the PR
method, two types of regularizers are adopted. The first regularizer is an L2 regularizer,
‖�‖22, to avoid over-fitting. The second regularizer,RPR(Y, S), is introduced to enforce
fairness. By adding these two regularizers to a negative log-likelihood, the objective
function to minimize is obtained:

loss({w(s)};D) = −L(D) + ηRPR(Y, S) + λ

2

∑

s

‖w(s)‖22, (14)

where λ and η are positive regularization parameters, and a log-likelihood function is

L(D) = ∑
(yi ,xi ,si )∈D ln P̂r◦[yi |xi , si ].

In the case of the original PR method that is designed to satisfy a model-based
independence, mutual information between Y and S is used as a prejudice remover
regularizer, because the smaller mutual information indicates a higher level of inde-
pendence. An original prejudice remover is defined as

RPR-MI(Y, S) =
∑

Y,S

P̂r◦[Y, S] ln P̂r◦[Y, S]
P̂r◦[Y ] P̂r◦[S] . (15)

Because logistic regression is a discriminativemodel andwe are now trying to satisfy a
model-based condition, we use Eq. (8) as P̂r◦[Y, S]. The other distributions, P̂r◦[Y ] and
P̂r◦[S], can be derived from P̂r◦[Y, S]. This regularizer is analytically differentiable,
and we used a conjugate gradient method for optimizing an objective function (14).

We then modify this original prejudice remover so as to satisfy an actual indepen-
dence constraint. For this purpose, we consider the independence between Y and S
following P̂r◦[Ỹ , S]. The modified prejudice remover is defined as
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RPR-AI(Y, S) =
∑

Y,S

P̂r◦[Ỹ , S] ln P̂r◦[Ỹ , S]
P̂r[Ỹ ] P̂r[S] . (16)

A joint distribution P̂r◦[Ỹ , S] can be derived by Eqs. (10) and (12). As we will demon-
strate in experimental Sect. 6, this small modification is helpful for realizing a drastic
improvement in fairness. Unfortunately, this modified prejudice remover is not dif-
ferentiable due to a discrete transformation in Eq. (12). Therefore, to optimize the
objective function, we used a Powell method, which is applicable without computing
gradients. The original and modified method are abbreviated as PR-MI and PR-AI,
respectively.

5 Reject-option-based classification

Kamiran et al. proposed amethod, reject option-based classification (ROC), to change
decision thresholds formaking fairer classification (Kamiran et al. 2012).After review-
ing the original ROC method, we show how to select decision thresholds to satisfy
model-based and actual independence for a naive Bayes case. We then extend our
method so as to make it applicable to classifiers other than those with a generative
model.

5.1 The original ROC method

Kamiran et al. discussed a theory for determining class labels based on a class posterior
distribution so that a fairness constraint was satisfied (Kamiran et al. 2012). In standard
classification, objects are classified to class 1 if the class posteriors satisfy the inequality
P̂r[Y=1|X] ≥ P̂r[Y=0|X], which is equivalent to P̂r[Y=1|X] ≥ 1/2. The threshold
1/2 is referred to as a decision threshold, and it is modified to make the decisions fair.
Given a threshold parameter, 1 > τ ≥ 1/2, objects such that S=0 are classified to
class 1 if P̂r[Y=1|X, S=0] ≥ 1− τ . Inversely, objects such that S=1 are classified to
class 1 if P̂r[Y=1|X, S=1] ≥ τ .

The authors pointed out the connection between this decision rule and cost-sensitive
learning (Elkan 2001). The goal of cost-sensitive learning is to classify objects so that
their misclassification costs are minimized. When classifying an object, a misclassifi-
cation cost is a penalty that is added when an estimated class of the object is different
from its true class. We turn to the ROC case. For objects such that S=0, the costs of
misclassifying objectswhose true classes are 0 are held to 1, but those ofmisclassifying
objects whose true classes are 1 are increased to τ/(1− τ). Non-protected objects are
treated inversely. This connection between a ROC method and cost-sensitive learning
reveals that changing a decision threshold is equivalent to changing the prior distri-
butions. Elkan’s theorem 2 in Elkan (2001) asserts the following relation. Given a
Bayesian classifier whose prior is b′ and whose decision threshold is p′, when this
prior is changed to b, how should we choose a new decision threshold, p, so as to
make these two classifiers indicate the same decision? Elkan’s theorem describes the
relation as
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p′ = b′ p(1 − b)

b − pb + b′ p − bb′ . (17)

According to this theorem, we can discuss adjusting priors instead of thresholds.
In the following subsections, we slightly generalize the original ROC method.

Decision thresholds are changed symmetrically in the original method, but we relax
this limitation. Specifically, the thresholds are changed to τ0 ∈ (0, 1) for an S = 0
group, while they are changed to τ1 ∈ (0, 1) for an S = 1 group.

5.2 A ROC method satisfying model-based independence

We here describe how to select priors for achieving model-based independence when
targeting a naive Bayes classifier. We first define a naive Bayes model satisfying a
model-based independence constraint, and parameters of the model are estimated by
maximizing a likelihood. We then show that this method corresponds to a special case
of the ROC method.

We modify a mixture of two-naive-Bayes models to satisfy a model-based inde-
pendence constraint, and estimate its parameters. This is the mixture model, which is
equivalent to Eq. (1):

P̂r[Y,X, S] = P̂r[Y |S] P̂r[S] P̂r[X|Y, S]. (18)

To satisfy a model-based independence constraint Eq. (6), we replace a class prior so
as to make a class variable independent from a sensitive feature, and we get:

P̂r◦[Y,X, S] = P̂r◦[Y ] P̂r◦[S] P̂r◦[X|Y, S]. (19)

It is very easy to derive the maximum likelihood estimators of a model (19) from a
training datasetD if both Y and S are binary, by simply counting the data in a training
dataset. Note that we adopt a Laplace smoothing technique to avoid the zero-counting
problem in later experiments. We abbreviate this method as ROCNB-MI.

We then clarify that this method is a special case of theROCmethod. Equation (18)
can be interpreted as a mixture of two naive Bayes models, each of which is learned
separately for the respective sensitive value. Furthermore, because only a class prior
is changed between models (18) and (19), the remaining parameters are unchanged:

P̂r◦[S=s] = P̂r[S=s], P̂r◦[X (k)|Y, S=s] = P̂r[X (k)|Y, S=s], s ∈ {0, 1}, k ∈ {1, . . . ,m}.

As a result, model (19) can be obtained from model (18) by replacing priors P̂r[Y |S]
with P̂r◦[Y ]. Note that, as in related work Sect. 7, we are generally required to assume
that a fair class is determined independently from X in a post-process case such as
this ROC method, but these equalities automatically hold because parameters other
than priors are unchanged. According to Elkan’s theorem Eq. (17), this is equivalent
to changing decision thresholds 1/2 to
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Algorithm 2AROC naive Bayes method to satisfy an actual independence constraint

Require: Learned parameters of standard classifiers: P̂r[Y |S], P̂r[S], P̂r[X|Y, S], training dataset: D
1: P̂r◦[S] ← P̂r[S], P̂r◦[X|Ỹ , S] ← P̂r[X|Y, S]  copy unchanging parameters
2: best Likelihood ← −∞
3: for all P̂r◦[Ỹ ]′ ∈ {candidate values for P̂r◦[Ỹ ]} do
4: Find values of parameters, P̂r◦[Ỹ |s]′, to satisfy P̂r◦[Ỹ |s]′≈ P̂r◦[Ỹ ]′ for the respective sensitive value
5: likelihood ← likelihood of a temporal model, P̂r◦[Ỹ |S]′ P̂r◦[S] P̂r◦[X|Ỹ , S], over D
6: if likelihood ≥ best Likelihood then
7: best Likelihood ← likelihood
8: P̂r◦[Ỹ |S] ← P̂r◦[Ỹ |S]′  update best parameter

9: Output parameters of a classifier: P̂r◦[Ỹ |S], P̂r◦[S], P̂r◦[X|Ỹ , S]

τs = P̂r[Y=1|s](1 − P̂r◦[Y=1])
P̂r◦[Y=1] + P̂r[Y=1|s] − 2 P̂r◦[Y=1] P̂r[Y=1|s] , s ∈ {0, 1}. (20)

It is concluded that thismethod can be considered as a special case of theROCmethod.

5.3 A ROC method satisfying actual independence

We next present an approach for finding decision thresholds to achieve actual indepen-
dence.As in the case of the aboveROCNB-MImethod, two naive-Bayes-classifiers are
trained for each sensitive value, and we search for new priors that maximize likelihood
under an actual independence constraint.

Algorithm 2 shows the outline of a ROC naive Bayes method for satisfying an
actual independence constraint (aROCNB-AImethod). Fundamentally, this algorithm
is designed to find the best parameters by a grid search under an actual independence
constraint. Because only priors are changed, all parameters other than priors are copied
(line 1). The distribution of a class label obtained by applying a deterministic decision
rule, P̂r◦[Ỹ ], is temporally fixed (line 3). For the distribution, priors of naive Bayes,
P̂r◦[Ỹ |s]′, are adjusted to satisfy the actual independence constraint Eq. (9) (line 4).
Using the adjusted priors, the temporal likelihood is calculated (line 5) and is compared
with the current best (line 6), and this algorithm finally outputs the best parameters
(line 9).

We then give the details of the step for finding appropriate priors in line 4. To
satisfy the condition specified by Eq. (9), for each sensitive value s, we must find a
prior P̂r◦[Ỹ |S=s]′ so that an induced distribution from the prior well-approximates a
given P̂r◦[Ỹ ]′. This task is formalized as an optimization problem:

P̂r◦[Ỹ=1|S=s]′ = min
P̂r◦[Y=1|S=s]′′

(
P̂r◦[Ỹ=1|S=s]′′ − P̂r◦[Ỹ=1]′

)2
, for s ∈ {0, 1}.

(21)
P̂r◦[Ỹ=1|S=s] can be computed from a joint distribution P̂r◦[Ỹ , S], which can be
derived by Eqs. (10) and (11) in Sect. 3.3.2. Here, we use P̂r◦[Y |S]′′ P̂r◦[S] P̂r◦[X|Ỹ , S]
as a joint model distribution in Eq. (11). Note that the procedure of finding optimal
priors was the same as that used in an actual fair-factorization in our preliminary
work (Kamishima et al. 2013).
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Finally, we should comment on the complexity of Algorithm 2. We begin with the
complexity of the optimization task in line 4. If data are sorted according to the value,

P̂r◦[Y=1|S]′′ P̂r◦[X|Ỹ=1, S] − P̂r◦[Y=0|S]′′ P̂r◦[X|Ỹ=0, S],

in O(n log n) time at the beginning, the optimal priors can be found in constant time.
The complexity of the main loop in line 3 depends on the size of a candidate set.
The set is composed of values from 0 to 1 at intervals 1/n, and the size of the set is
O(n). Putting all these facts together, the total complexity of Algorithm 2 becomes
O(n log n + n) = O(n log n).

5.4 A universal ROC method

Next, we will extend the applicable target of the concept of actual independence.
There are three types of classifiers: a generative model, a discriminative model, and
a discriminant function (Bishop 2006, Sect. 1.5.4). However, the approach in the
previous section is only applicable to a classifier with a generative model. To relax
this restriction, we developed a procedure, which we call the universal ROC method,
to make the approach applicable to all three types of classifiers.

Before explaining this method, we must first show the concept of a classifier with
a discriminant function. Decisions of classifiers depend on the sign of a discriminant
function, f (x). A classifier with a discriminative model, such as a logistic regression,
directly expresses the posterior class probabilities. It determines a predicted class
based on the sign of the discriminant function:

f (x) = P̂r[Y=1|X=x] − P̂r[Y=0|X=x]. (22)

The other type is a classifier with a discriminant function that maps each input directly
onto a class label, such as a support vector machine. This type also determines its
predicted class based on the sign of the discriminant function, f (x). Much as in the
case of a ROC method for a generative model, we employ a pair of discriminant
functions fs(x), one for each sensitive value s ∈ {0, 1}.

We can now consider an actual independence constraint for classifiers with a
discriminant function. To derive this condition, we exploit an actual independence
constraint for a discriminative model in Sect. 3.3.2. We here rewrite Eq. (12) by using
discriminant function (22):

⎧
⎪⎨

⎪⎩

P̂r◦[Ỹ=1|X=x, S=s] =
{
1, if f ◦

s (x) ≥ 0

0, otherwise

P̂r◦[Ỹ=0|X=x, S=s] = 1 − P̂r◦[Y=1|X=x, S=s]
, (23)

where f ◦
s (x) is a discriminant function used for predicting a class of objects whose

sensitive value is s. Now, even for a classifier with a discriminant function, we can
compute a fair model distribution, P̂r◦[Ỹ , S], fromEqs. (10) and (23). Note that model-
based independence can be defined for classifiers with a discriminative model, but it
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cannot be defined for those with a discriminant function, because a joint distribution
is not explicitly modeled.

We thenmodifyAlgorithm2 to render it applicable to a classifierwith a discriminant
function. Two functions, fs(x), s ∈ {0, 1}, are learned, one from each of the datasets,
D0 and D1, and bias parameters, bs, s ∈ {0, 1}, are introduced. We define a pair of
fair discriminant functions as

f ◦
s (x) = fs(x) + bs, for s ∈ {0, 1}. (24)

Parameters to optimize P̂r◦[y|s]′′ inEq. (21) are replacedwith these bias parameters,bs .
P̂r◦[Ỹ |X, S] is calculated by Eq. (23) and is applied in the step for finding appropriate
parameters in line 4. In addition, likelihood is derived based on discriminant functions
in line 5. We applied this modified algorithm to logistic regression and a linear SVM,
and call these fairness-aware classifiers the ROCLR-AI and ROCSVM-AI methods,
respectively.

It should be noted that this framework covers the approach for a classifier with a
generative model; that is, we focus on the inequality appearing in Eq. (11):

P̂r[Y=1, x, s] ≥ P̂r[Y=0, x, s].

We decompose these joint distributions as if an independent generative model is
learned for each sensitive value:

P̂r[Y,X, S] = P̂r[X|Y, S] P̂r[Y |S] P̂r[S]

After taking a logarithm of each side of this inequality, the fair discriminant function
can be derived by subtracting the right-hand side from the left-hand side:

f ◦
s (x) =

{
log P̂r[Y=1|X=x, S=s] − log P̂r[Y=0|X=x, S=s]

}

+
{
log P̂r◦[Y=1|S=s] − log P̂r◦[Y=0|S=s]

}
.

The first and second terms surrounded by curly braces correspond to fs(x) and bs in
Eq. (24), respectively. This fact indicates that the universal ROC method can change
all types of classifiers so as to satisfy an actual independence constraint.

6 Experiment

We implemented fairness-aware classifiers satisfying model-based independence and
actual independence, and empirically compared these classifiers on real benchmark
datasets and a synthetic dataset. This comparison revealed the importance of an actual
independence condition, which takes the effects of model bias and a deterministic
decision rule into account.
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6.1 Experimental conditions

Before showing the experimental results, wewill describe the experimental conditions.
We performed five-fold cross-validation, and calculated the evaluation indices. To
evaluate the performance of fairness-aware classifiers, we had to examine how strictly
a fairness constraintwas satisfied, aswell as howaccurately class labelswere predicted.
We used an accuracy measure (Acc), which is the ratio of correctly labeled samples,
to evaluate the prediction accuracy. The larger the accuracy is, the more accurately
classes are predicted. We supplementally showed Precision and Recall. Precision
is the ratio of correctly labeled positive data to the all positively labeled data, and
Recall is the ratio of correctly labeled positive data to the all true positive data. We
used two metrics for the evaluation of fairness: Calders and Verwer’s score (CVS) and
normalizedmutual information (NMI).CVS is defined by Eq. (2). AsCVS approaches
zero, fairer decisions are made.Mutual information is a non-negative index tomeasure
the quantity of information shared between random variables. As mutual information
between Y and S is linearly decreased, the probability that the value of Y can be
inferred given the state of S is exponentially decreased.NMI is defined by normalizing
the mutual information into a range [0, 1]:

NMI(Y, S) = I(Y ; S)/
√
H(Y )H(S), (25)

where I(·; ·) and H(·) denote mutual information and entropy, respectively. This is a
geometric mean of I(Y ; S)/H(Y ) and I(Y ; S)/H(S). Intuitively, while the former is a
ratio of information of S misused for prediction, the latter is interpreted as a ratio of
information of S leaked by observing predictions. The smaller NMI is, the fairer are
the decisions. We round NMI to two significant figures and round the other indexes
off to three decimal places.

We examined classifiers as described below.1 As baselines, we tested standard
classifiers trained by using only non-sensitive features. These were three types of
classifiers, naive Bayes, logistic regression, and a linear SVM (respectively, NB, LR,
and SVM), which were implemented in the scikit-learn (Pedregosa et al. 2011) pack-
ages. Note that these classifiers maymake potentially unfair decisions. Fairness-aware
classifiers were variants of these three classifiers. Variants of naive Bayes classifiers
were Calders & Verwer’s two-naive-Bayes (CV2NB) in Sect. 3.1, the ROC method
satisfying model-based independence (ROCNB-MI) in Sect. 5.2, and that satisfying
actual independence (ROCNB-AI) in Sect. 5.3. Regarding logistic regression, we
adopted the prejudice remover regularizers satisfying model-based and actual inde-
pendence conditions (respectively, PR-MI and PR-AI) in Sect. 4, and the universal
ROC (ROCLR-AI) in Sect. 5.4. Finally, we tested a universal ROC using the linear
SVM (ROCSVM-AI) in Sect. 5.4.

1 Our implementations of these methods are available at http://www.kamishima.net/faclass/.
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Table 1 Accuracy and fairness indexes for the Adult dataset

Model-based independence Actual independence

Methods Acc NMI CVS Methods Acc NMI CVS

NB 0.820 1.11× 10−01 0.348 CV2NB 0.825 7.94× 10−10 0.000

ROCNB-MI 0.820 2.25× 10−02 0.160 ROCNB-AI 0.837 8.59× 10−06 0.002

LR 0.862 4.51× 10−02 0.172 PR-AI 0.828 7.08× 10−05 0.008

PR-MI 0.814 2.57× 10−02 0.056 ROCLR-AI 0.840 1.14× 10−09 −0.000

SVM 0.862 4.32× 10−02 0.160 ROCSVM-AI 0.839 1.09× 10−07 −0.000

Table 2 Accuracy and fairness indexes for the Dutch dataset

Model-based independence Actual independence

Methods Acc NMI CVS Methods Acc NMI CVS

NB 0.787 1.83× 10−02 0.159 CV2NB 0.757 8.47× 10−06 −0.003

ROCNB-MI 0.808 8.82× 10−02 0.346 ROCNB-AI 0.765 1.80× 10−06 −0.002

LR 0.819 2.19× 10−02 0.171 PR-AI 0.716 4.63× 10−07 0.001

PR-MI 0.790 2.28× 10−02 0.161 ROCLR-AI 0.778 5.68× 10−07 −0.001

SVM 0.817 1.89× 10−02 0.158 ROCSVM-AI 0.777 2.35× 10−07 −0.001

6.2 Results on real benchmark datasets

Wefirst tested fairness-aware classifiers on the two benchmark datasets2 used inKami-
ran et al. (2013). The first was an adult dataset (a.k.a., the census income dataset)
originally distributed at the UCI repository (Frank and Asuncion 2010). We refer to
this dataset as Adult. Its class variable represented whether an individual’s income
was high or low, and its sensitive feature represented the individual’s gender. The
size of the dataset was 15, 696, and the number of non-sensitive features was 12.
The second dataset was the Dutch census dataset, which we refer to as Dutch. Its
class variable represented whether an individual’s profession was high income or low
income, and its sensitive feature represented the individual’s gender. The size of the
dataset was 60, 420, and the number of non-sensitive features was 10. Note that all
features were categorical and were transformed into multiple binary features by a
1-of-K scheme.

We present our experimental results for the Adult dataset in Table 1 and those
for the Dutch dataset in Table 2. For each dataset and each classifier, we com-
puted three evaluation measures: accuracy (Acc), normalized mutual information
(NMI), and the Caldars & Verwer score (CVS). We show the results obtained
by baseline methods or methods to satisfy model-based independence in the
left half of each table, and those obtained by methods to satisfy actual inde-

2 https://sites.google.com/site/conditionaldiscrimination/.
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pendence in the right half of each table. For PR-MI and PR-AI methods, we
chose 3×101 and 1×104 as an independence regularization parameter, η, respec-
tively.

We evaluated the accuracy and fairness of classifiers on these datasets in order to
examine the following two questions. First, is the difference between model-based
independence and actual independence essential to improve the trade-offs between
accuracy and fairness? This validates the importance of the effects of model bias
and deterministic decision as analyzed in Sect. 3.2. Second, can the universal ROC
methods in Sect. 5.4 improve fairness effectively?

We begin with the first question: is the difference between model-based inde-
pendence and actual independence essential for the performance in fairness-aware
classification? To answer this, we compared the results in the left half of the tables with
those in the right half. Comparing the fairness-aware classifiers with their correspond-
ing baseline methods, the relative losses in accuracy by satisfying actual independence
were at most about 5% except for the Dutch PR-AI case (12.5%). Moreover, the pre-
diction accuracy was improved in some cases, e.g., the ROCNB-AI for the Adult
dataset. In terms of fairness, the improvements were drastic. The NMIs and CVSes of
the baselines were worse than 1×10−02 and 0.1, respectively. On the other hand, the
methods satisfying actual independence achieved better performance than the order
of 10−04 in NMIs and than 0.01 in CVS.

We then compared methods satisfying actual independence with those satisfying
model-based independence, which are aligned in the same row in the tables. Specif-
ically, the ROCNB-AI was compared with the ROCNB-MI, and the PR-AI was
compared with the PR-MI. The performances in accuracy appeared to be compa-
rable. Each of the PR-AI and the ROCNB-AI methods won in two cases and lost in
two cases. Note that the differences were all significant at the level of 1%. In terms
of fairness, methods satisfying actual independence again achieved drastic improve-
ments. While the NMIs obtained by the ROCNB-MI and PR-MImethods were worse
than 10−02, those obtained byROCNB-AI andPR-AIwere better than 10−04. In terms
of CVS, the methods satisfying actual independence could achieve scores of nearly
zero, but methods satisfying model-based independence could not. From the above
results, we can conclude that satisfying a constraint of actual independence, rather
than a constraint of model-based independence, improved fairness while minimizing
the loss of accuracy.

We now turn to the second question: can the universal ROC methods in Sect. 5.4
improve fairness effectively? As observed in Tables 1, 2, the ROCLR-AI and
ROCSVM-AImethods achieved amuchhigher level of fairness.Because this approach
to the universalROCmethod can be applied to any type of classifier, users can choose
any type of classifiers as bases of fairness-aware classifiers.

We now show the results of the supplemental examination of the effects of an
independence parameter η of prejudice removers, the PR-MI and the PR-AI, to adjust
the balance between accuracy and fairness. Figure 5 shows the change of performance
in accuracy and fairness depending on the parameter η. The increase of η generally
worsened accuracy and improved fairness as we intended. The PR-MI method failed
if η > 102 because all the data were classified into one class, while the PR-AImethod
worked relatively stably even for larger η. Therefore, we chose η=3×101, at the point
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(a) (b)

(d)(c)

L

Fig. 5 The change in accuracy and NMI according to η a Adult (Acc). b Dutch (Acc). c Adult (NMI).
d Dutch (NMI). Note: Horizontal axes represent the parameter η, and vertical axes represent statistics in
each subtitle. Blue broken lines, range solid lines with circles, and red dotted lines with squares indicate
the statistics of LR, PR-MI, and PR-AI, respectively. Larger Acc indicates better performance in accuracy,
and smaller MNI indicates better performance in fairness

where just before the accuracy started to fall, for the PR-MI, and chose η=104, at
which Acc and NMI became saturated, for the PR-AI. Note that NMIs were unstable
for large η because the non-convexity of a prejudice remover regularizer made it
difficult to optimize the objective function.

Finally, we will comment on the effect of changing a class ratio, P̂r◦[Y ]. As pointed
out in Žliobaitė (2015), this ratio affects the realizable degree of fairness. In addi-
tion, the ratio cannot be changed, such as in the case that the number of successful
candidates is fixed in a university admittance. In the ROC method, the ratio can
be controlled, and we set the ratio, P̂r◦[Y ], to that observed in a training dataset.
If this constraint and an actual independence condition are simultaneously satis-
fied, the method corresponds to our preliminary method (Kamishima et al. 2013).
We denote these ROCNB-AI, ROCLR-AI, and ROCSVM-AI variants by ROCNB-
FF, ROCLR-FF, and ROCSVM-FF, respectively. Tables 3, 4 showed accuracy
indexes, Acc, Precision, and Recall for the Adult and Dutch datasets, respec-
tively. The estimated positive ratio (EPR) is the ratio of positively estimated data
to the whole dataset. Note that the ratios of positive data in the training dataset
were 0.235 for the Adult and 0.476 for the Dutch. The EPRs could diverge from
these ratios, if they were not constrained. In particular, the PR-MI method largely
diverged. Additionally, in cases in which the EPRs were constrained, Precision
and Recall tended to have similar values. However, when the EPRs were not
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Table 3 Additional accuracy indexes and estimated positive ratios for the Adult dataset

Model-based independence Actual independence

Methods EPR Acc Precision Reccall Methods EPR Acc Precision Recall

NB 0.323 0.820 0.584 0.803 CV2NB 0.234 0.825 0.628 0.627

ROCNB-MI 0.304 0.820 0.591 0.763 ROCNB-AI 0.162 0.837 0.722 0.497

ROCNB-FF 0.235 0.825 0.628 0.629

LR 0.185 0.862 0.762 0.599 PR-AI 0.241 0.828 0.631 0.646

PR-MI 0.050 0.814 0.986 0.211 ROCLR-AI 0.169 0.840 0.722 0.520

ROCLR-FF 0.235 0.833 0.44 0.645

SVM 0.170 0.862 0.786 0.568 ROCSVM-AI 0.174 0.839 0.711 0.528

ROCSVM-FF 0.236 0.832 0.641 0.644

Table 4 Additional accuracy indexes and estimated positive ratios for the Dutch dataset

Model-based independence Actual independence

Methods EPR Acc Precision Reccall Methods EPR Acc Precision Recall

NB 0.496 0.787 0.765 0.797 CV2NB 0.474 0.757 0.746 0.742

ROCNB-MI 0.493 0.808 0.788 0.815 ROCNB-AI 0.401 0.765 0.801 0.674

ROCNB-FF 0.477 0.758 0.745 0.746

LR 0.422 0.819 0.850 0.753 PR-AI 0.635 0.716 0.652 0.869

PR-MI 0.320 0.790 0.916 0.616 ROCLR-AI 0.433 0.778 0.793 0.721

ROCLR-FF 0.476 0.774 0.763 0.763

SVM 0.404 0.817 0.863 0.733 ROCSVM-AI 0.436 0.777 0.790 0.724

ROCSVM-FF 0.477 0.774 0.762 0.763

constrained, Precision and Recall could deviate; this was especially true in the
PR-MI method. Regarding fairness, NMI were 4.50×10−08 (Adult) and 2.43×10−12

(Dutch) for the ROCNB-FF method. Compared with the ROCNB-MI method, this
method showed better fairness. A overall trend in the comparison of the ROCNB-
FF method with ROCNB-AI method; the former was better in fairness, but worse in
accuracy. This is because the EPR was changed to optimize accuracy in ROCNB-
AI.

We can summarize the above experimental results as follows:

– Fairness could be drastically improved with less sacrifice in accuracy by satisfy-
ing actual independence instead of model-based independence. This implies the
importance of the effects of model bias and a deterministic decision rule in terms
of fairness.

– The universal ROCmethod worked as well as the other fairness-aware classifiers,
and any type of classifier could be modified to a fairness-aware classifier.
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Table 5 Accuracy and fairness indexes for a synthetic dataset

Model-based independence Actual independence

Methods FAcc UAcc CVS Methods FAcc UAcc CVS

NB 0.891 0.965 0.183 CV2NB 0.932 0.908 0.014

ROCNB-MI 0.909 0.945 0.126 ROCNB-AI 0.925 0.911 0.013

LR 0.894 0.984 0.189 PR-AI 0.906 0.924 0.020

PR-MI 0.920 0.928 0.033 ROCLR-AI 0.922 0.933 0.012

SVM 0.893 0.980 0.189 ROCSVM-AI 0.922 0.929 0.012

6.3 Results for a synthetic dataset

We here investigate whether class labels generated by distributions on a fair-subspace
can be estimated by fairness-aware classifiers. In the previous section, we examined
accuracy to evaluate how correctly unfair labels were predicted. However, we really
want to evaluate how correctly fair labels were predicted. Because such fair labels
cannot be observed in real datasets, we will use a synthetic dataset to test accuracy for
the fair labels.

We generated a synthetic dataset so that it satisfied fairness-constraints. We gen-
erated n non-sensitive feature vectors, xi , i = 1, . . . , n. Each vector consisted of
20 binary features, which were uniformly-randomly generated. Vectors {xi } were
divided into 18 and 2 features, which were denoted by {x(L)

i } and {x(S)
i }, respectively.

We generated 20 weights, w, whose elements followed a distribution, Normal(0, 1),
and the weight vector was again divided into w(L) and w(S). Scores for fair classes

were calculated by f (L)
i = w(L)
x(L)

i +ε, where ε ∼ Normal(0, 0.1)was independent
Gaussian noise.We assigned 0 fair labels for the bottom n Pr◦[L=0] data in the scores,
and 1 fair labels for the rest. Scores for sensitive features were calculated by f (S)

i =
w(S)
x(S)

i + ε, and sensitive features were generated in a similar way. A fair label,
L , and a sensitive feature, S, were unconditionally independent because they did not
depend on common non-sensitive features; thus, a fairness constraint, L ⊥⊥ S, was sat-

isfied. Scores for unfair labels were calculated by f (Y )
i = w(L)
x(L)

i +w(S)
x(S)
i + ε,

and unfair labels, Y , were generated in a similar way. Here, because both unfair labels
and sensitive features depend on x(S)

i , unfair labels and sensitive features were con-
ditionally independent, but not unconditionally independent. Finally, we show the
parameters: Pr◦[L=0] = 0.5, Pr◦[S=0] = 0.3, Pr◦[Y=0] = 0.5, n=10000.

We tested the same set of classifiers tested in the previous section on synthetic
datasets generated by the procedure described above. 100 pairs of datasets were gen-
erated: one of each pair was used for training, and the other was used for testing. Note
that only unfair labels were used in training. Table 5 shows the mean accuracies over
100 datasets for both fair and unfair labels, denoted by FAcc and UAcc, respectively.
Means of absolutes of the fairness indexes between predicted labels and sensitive val-
ues, CVS, are also shown. Note that we did not show means of NMI because they are
meaningless due to their large variance over 100 datasets.
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Fig. 6 A geometrical representation of approaches to fairness-aware classification

We first focus on FAcc and UAcc. All the standard classifiers could successfully
predict unfair labels, but performed poorly in predicting fair labels. Inversely, all
fairness-aware classifiers could improve the accuracy on fair labels, but worsened the
accuracy on unfair labels, compared to their corresponding standard classifiers, e.g.,
NB for CV2NB. Further, in terms of CV2NB and ROCNB-AI, the accuracies on fair
labels were better than those on unfair labels. These results were what we intended,
because standard classifiers and fairness-aware classifiers were designed to predict
unfair and fair labels, respectively. We next discuss the fairness index, CVS. All
fairness-aware classifiers could make fairer decisions than their corresponding stan-
dard classifiers, as we intended. In addition, classifiers satisfying actual independence
exhibited greater fairness than those satisfying model-based independence. CVS for
ROCNB-AI was smaller than that for ROCNB-AI, and PR-AI classified more fairly
than PR-MI. This proved the advantage of achieving actual independence.

We can summarize the above experimental results as follows:

– Fairness-aware classifiers performed better than their corresponding standard clas-
sifiers in terms of accuracy on fair labels and in fairness indexes.

– Classifiers satisfying actual independence could make fairer decisions than those
satisfying model-based independence.

7 Related work

This section reviews fairness-aware classifiers. Figure 6 geometrically represents
approaches to fairness-aware classification as in Fig. 1. Approaches to fairness-aware
classification can be classified into three types (Ruggieri et al. 2010): pre-process,
in-process, and post-process. In the pre-process approach, potentially unfair data are
mapped onto the fair sub-space ( a© in Fig. 6), and the fair model is learned by a stan-
dard classifier ( b©). Any classifier can in principle be used in this approach, but the
development of a mapping method might be difficult without making any assumption
on a classifier. In particular, we consider that actual independence will not be satisfied
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without specifying a classifier. Massaging is a technique to relabel a dataset based
on the predicted probability of class labels (Kamiran and Calders 2012). Hajian and
Domingo-Ferrer (2013) changed labels or sensitive features by exploiting frequent
pattern mining. Zemel et al. (2013) tried to obtain an intermediate representation that
fulfilled three constraints: statistical parity, minimizing the distortion, andmaximizing
the classification accuracy. Feldman et al. (2015) proposed a method to transform non-
sensitive features so that a sensitive feature cannot be predicted from the transformed
non-sensitive features.

In the in-process approach, a fair model is learned directly from a potentially unfair
dataset as in c© in Fig. 6. This approach can potentially achieve better trade-offs than
the other approaches because classifiers are less restricted in their design.However, it is
technically difficult to formalize or optimize an objective function. In addition, for each
distinct type of classifier, its fair variant must be developed. The prejudice remover in
Sect. 4 is categorized into this approach. Kamiran et al. (2010) developed algorithms to
learn decision trees for a fairness-aware classification task, in which the labels at leaf
nodeswere changed so as to decrease theCVS. Fukuchi et al. introduced two constraint
terms, η-neutrality (Fukuchi et al. 2013) and neutrality risk (Fukuchi and Sakuma
2014). Zafar et al. (2015) developed SVMs and logistic regression with constraint
terms that make classes uncorrelated (instead of independent) with a sensitive feature.
They also proposed a classifier to satisfy a fairness condition that misclassification
rates for groups sharing the same sensitive values were equal (Zafar et al. 2017).

In the post-process approach, a standard classifier is first learned ( d©), and then the
learned classifier is modified to satisfy a fairness constraint ( e©). This approach adopts
the rather restrictive assumption, obliviousness (Hardt et al. 2016), that fair class labels
are determined based only on labels of a standard classifier and a sensitive value, and
are independent from non-sensitive features. However, this obliviousness assumption
makes the development of a fairness-aware classifier easier. Calders & Verwer’s two-
naive-Bayes method in Sect. 3.1 and theROCmethod in Sect. 5.1 are categorized into
this approach. Kamiran et al. discussed the re-labeling technique for fairer decisions
while considering the effects of confounding variables (Kamiran et al. 2013). Hardt
et al. (2016) developed a post-process-style method to match misclassification rates
between groups.

Finally, we will review other aspects of fairness-aware classification. Fairness-
aware data mining is an emerging research topic and involves many controversial
problems. Hajian et al. provide a good tutorial on the relevant literature (Hajian et al.
2016). When using a fairness-aware classifier, a sensitive feature may not be pro-
vided for various reasons, such as the protection of privacy. To alleviate this problem,
Fukuchi et al. (2013) proposed to use a predictor for a sensitive feature, learned from
an independent dataset. In Sweeney (2013), to investigate the fairness online of ad
delivery, a sensitive feature, race, is predicted from an independent public dataset, the
birth records of the state of California. Even if both a class and a sensitive feature
depend on a common factor, the use of the factor in classification is legal for various
reasons, such as a genuine occupational requirement. In the context of fairness-aware
data mining, such a factor is referred to as an explainable variable (Kamiran et al.
2013). Given such an explainable variable, E, a fair constraint can be relaxed from
unconditional independence, Y ⊥⊥ S, to conditional independence, Y ⊥⊥ S | E.
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Because an explainable variable can be treated as a confounding variable in a causal
inference context, a propensity score is used to maintain the effect of a explainable
variable (Calders et al. 2013).

8 Conclusions

In this paper, we discussed an independence condition in terms of a fairness-aware
classifier. We proposed notions of model-based and actual independence, in which
the treatments of model bias and a decision rule are different. We then developed
two types of pairs of classifiers, one of which achieves model-based independence
and the other actual independence. Empirical comparison of these pairs of classifiers
validated that the distinction of two types of independence is essential for improving
trade-offs between fairness and accuracy. Finally, We extended an approach exploited
in the ROC method to make it applicable to any type of classifiers.

Though we can now achieve a higher level of fairness by satisfying an actual
independence condition, the time complexity of algorithms must be improved in the
future. Due to the discrete property of a deterministic decision rule, the objective
function to optimize becomes indifferentiable, and this fact makes it difficult to find
optimal parameters. Approximation and relaxation techniques would be helpful for
alleviating this problem.
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