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discrimination score 
 

Distributive fairness means the 
equality of determination ratios 
between sensitive groups

Pr[ ̂Y = 1 ∣ S = 0] − Pr[ ̂Y = 1 ∣ S = 1]



Two Naïve Bayes method
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(1) Learn a pair of naïve Bayes 
classifiers for each sensitive 
group


(2) A joint distribution of Y and 
S is iteratively modified so 
as to satisfy the fairness 
condition
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Formulation as  
a Constrained Optimization Problem
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Minimize Objective Function

classification loss

loss(𝒟 ∣ Θ)

fairness constraint

−I(Y, S)− λ

balancing fairness and utility
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It would be the happiest moment for researchers
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However, it was the beginning of the long winding road



β1 Model
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datasets of both groups

threshold for orange groupthreshold for orange group

This model was not converged



β2 Model
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datasets of blue group

threshold for orange group

threshold for blue group

This model was converged, 
but it was unfair than an original classifier

datasets of orange group

classifier for orange group

classifier for blue group

“Fairness-aware Learning through Regularization Approach” , IEEE International Workshop on Privacy Aspects 
of Data Mining, 2011



ECMLPKDD2012 model
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The β2 model was unfair than an original model

The objective function is non-convex, and its local minimas were bad

Initializing classifiers without constraint terms

This model was fairer than an original classifier

“Fairness-aware Classifier with Prejudice Remover Regularizer” , ECMLPKDD, 2012
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S O T A

Two Naïve Bayes
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Actual Independence
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“Model-based and Actual Independence for Fairness-aware Classification” , Data Mining and Knowledge 
Discovery, 2018

Actual Independence: Class labels are deterministically generated 
by applying a decision rule

probabilistic deterministic

̂Y ∼ Pr[ ̂Y = 1 ∣ f(X)] ̂Y = 1 if Pr[ ̂Y = 1 ∣ f(X)] ≥ 0.5

effectiveness improvement



Fair Recommendation
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a prediction function is selected according to a sensitive value 

sensitive feature

Çr(x, y, s) = �(s) + b(s)x + c(s)y + p(s)x q(s)y
Ò

Prediction Function

Objective Function

≥D (ri * Çr(xi, yi))2 * ⌘ indep(R,S) + � Ò⇥Ò2

independence parameter: control the balance 
between the independence and accuracy

“Enhancement of the Neutrality in Recommendation” , The 2nd Workshop on Human Decision Making in 
Recommender Systems, 2012

“Efficiency Improvement of Neutrality-enhanced Recommendation” , The 3rd Workshop on Human Decision 
Making in Recommender Systems, 2013

“Recommendation Independence” , Proc of the Conf. on Fairness, Accountability and Transparency, 2018



Interests of Data Science Communities
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Validity
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Effectiveness
maximizing accuracy
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My survey slide about Fairness-Aware Machine Learning is available at:


https://www.kamishima.net/faml/

https://www.kamishima.net/faml/

