
Fairness-Aware 
Machine Learning and Data Mining

Toshihiro Kamishima

www.kamishima.net


Updated: 2025-05-13

1



Fairness-Aware Machine Learning

2

Fairness-Aware Machine Learning 
Data analysis taking into account potential issues of fairness, 
discrimination, neutrality, or independence. It maintains the influence 
of these types of sensitive information:


to enhance social fairness (gender, race,…)

restricted by law or contracts (insider or private information)

any information whose influence data-analysts want to ignore

The spread of machine learning technologies




Machine learning is being increasingly applied for serious decisions 
Ex: credit scoring, insurance rating, employment application

✽ We here use the term ‘fairness-aware’ instead of an original term, ‘discrimination-
aware’, because the term discrimination means classification in an ML context



Technical Aspects of FAML
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FAML was originally invented to eliminate socially unfair outcomes 
when applying ML techniques to real-world problems 

More extensively, FAML methods would be helpful for correcting 
any type of biases, which are irrelevant to social discrimination, if 
what generates the biases is known

Hotels’ occupancy rates are generally high, when room charges are high

Of course, the increase of occupancy rates are affected by factors 
besides room charges	 [Athey 17]




If such a factor is known to be a seasonal effect, FAML methods can be 
used for predicting a pure influence from room charges to occupancy 
rates

Ex:



Growth of Fairness in ML
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[Moritz Hardt’s homepage]
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The latest version of this slide is distributed at the URL:


Fairness-Aware 
Machine Learning and Data Mining 

http://www.kamishima.net/faml/
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Part Ⅰ: Backgrounds

Types of Biases

Instances of Data Bias

Instances of Inductive Biases
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Part Ⅱ: Formal Fairness 
Basics of Formal Fairness

Association-Based Fairness


Basics of Associations

Criteria

Properties

Measures


Counterfactual Fairness

Basics of Causal Inference

Total Fairness Criteria

Path-Specific Fairness Criteria


Economics-Based Fairness
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Part Ⅲ: Fairness-Aware Machine Learning 
Overview 
Unfairness Discovery


Discovery from Datasets

Association-based fairness


Discovery from Models

Unfairness Prevention


Classification: Pre-process, In-process, Post-process

(Regression)

Recommendation

Ranking

(Clustering)

Other Tasks
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Part Ⅳ: Other Topics 
Mitigation of a Sample Selection Bias

Disclosure

Other Fairness-Aware Machine Learning Topics

Relation to the Other Machine Learning Topics

Software

Evidence-Based Decision Making
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Part Ⅰ 
Backgrounds
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Bias on the Web
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[Baeza-Yates 18]
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contributed articles

the significance of the categories of 
bias identified, not on methodologi-
cal aspects of the research. For more 
detail, see the References and the re-
search listed in the online appendix 
“Further Reading” (dl.acm.org/cita-
tion.cfm?doid=3209581&picked=form
ats) of this article. 

Activity Bias, or Wisdom of a Few 
In 2011, a study by Wu et al.28 on how 
people followed other people on Twit-
ter found that the 0.05% of the most 
popular people attracted almost 50% 
of all participants;28 that is, half of the 
Twitter users in the dataset were fol-
lowing only a few select celebrities. I 

thus asked myself: What percentage 
of active Web users generate half the 
content in a social media website? I 
did not, however, consider the silent 
majority of Web users who only watch 
the Web without contributing to it, 
which in itself is a form of self-selec-
tion bias.14 Saez-Trumper and I8 ana-
lyzed four datasets, and as I detail, the 
results surprised us. 

Exploring a Facebook dataset from 
2009 with almost 40,000 active users, 
we found 7% of them produced 50% of 
the posts. In a larger dataset of Amazon 
reviews from 2013, we found just 4% of 
the active users. In a very large dataset 
from 2011 with 12 million active Twit-
ter users, the result was only 2%. Fi-
nally, we learned that the first version 
of half the entries of English Wikipedia 
was researched and posted by 0.04% of 
its registered editors, or approximately 
2,000 people, indicating only a small 
percentage of all users contribute to 
the Web and the notion that it repre-
sents the wisdom of the overall crowd 
is an illusion. 

In light of such findings,8 it did not 
make sense that just 4% of the people 
voluntarily write half of all the re-
views in the Amazon dataset. I sensed 
something else is at play. A month 
after publication of our results, my 
hunch was confirmed. In October 
2015, Amazon began a corporate cam-
paign against paid fake reviews that 
continued in 2016 by suing almost 
1,000 people accused of writing them. 
Our analysis8 also found that if we 
consider only the reviews that some 
people find helpful, the percentage 
decreases to 2.5%, using the positive 
correlation between the average help-
fulness of each review according to 
users and a proxy of text quality. Al-
though the example of English Wiki-
pedia is the most biased, it represents 
a positive bias. The 2,000 people at 
the start of English Wikipedia prob-
ably triggered a snowball effect that 
helped Wikipedia become the vast 
encyclopedic resource it is today. 

Zipf’s least-effort principle,29 also 
called Zipf’s law, maintains that many 
people do only a little while few people 
do a lot, possibly helping explain a big 
part of activity bias. However, economic 
and social incentives also play a role in 
yielding this result. For example, Zipf’s 
law can be seen in most Web measures 

both the growth of the Web and its use. 
Here, I explain each of the biases (in 
red) and classify them by type, begin-
ning with activity bias resulting from 
how people use the Web and the hid-
den bias of people without Internet ac-
cess. I then address bias in Web data 
and how it potentially taints the algo-
rithms that use it, followed by biases 
created through our interaction with 
websites and how content and use 
recycles back to the Web or to Web-
based systems, creating various types 
of second-order bias. 

Consider the following survey of re-
search on bias on the Web, some I was 
involved with personally, focusing on 

Figure 1. The vicious cycle of bias on the Web. 

Activity bias

Second-order bias

Self-selection bias
Algorithmic bias

Interaction bias

Sampling bias

Data bias

Web

Screen

Algorithm

Figure 2. Shame effect (line with small trend direction) vs. minimal effort (notable   
trend direction) on number of links on U.K. webpages, with intersection between 12  
and 13 links. Data at far right is probably due to pages having been written by   
software, not by Web users or developers.5
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Bias on the Web

13

[Baeza-Yates 18]Figure 1. The vicious cycle of bias on the Web. 
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Bias Sources in Machine Learning
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Data / Annotation Bias: bias of labels or features in data 
Decisions whether to approve loan are unfair by reflecting on 
prejudice against a specific group in a historical record


Sample Selection Bias: data are not representatives of population 
Records who have been able to pay off their loans are only available 
for those who have been approved the loans


Inductive Bias: a bias caused by a machine learning algorithm 
Records for minority individuals who have been able to pay off loans 
in a minority group can be ignored due to the assumption of ML 
algorithms



Data / Annotation Bias
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A Prediction is made by aggregating data

No Yes NoYesNo

Is this an apple?

Even if inappropriate data is contained in a given dataset,

the data can affect the prediction without correction

Data Bias / Annotation Bias: Target values or feature values in a 
training data are biased due to annotator’s cognitive bias or 
inappropriate observation schemes

Even if an apple is given, the predictor trained by an inappropriate data 
set may output “No”



Sample Selection Bias
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Sample Selection Bias: Whether a datum is sampled depends on   
conditions or contents of the datum, and thus an observed dataset 
is not a representative of population

✽ Strictly speaking, independence between the variables and the other variables needs to be considered

[Heckman 79, Zadrozny 04]

Simple prediction algorithms cannot learn appropriately from a 
dataset whose contents depend on contents of the data

learned  
model

learning application

mismatch between distributions of learned and applied populations



Example of Sample Selection Bias
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loan application: A model is learned from a dataset including only 
approved applicants, but the model will be applied to applicants 
including declined applicants  sample selection bias

A model is used for the targets different from a learned dataset




The learned model cannot classify targets correctly

loan

application

declined

approved
default

full payment

unknown

population to learn

a model for prediction

population to apply 

the learned model

mismatch



Inductive Bias
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Inductive Bias: a bias caused by an assumption adopted in an 
inductive machine learning algorithms

Inductive Machine Learning Algorithms:

prediction function

prediction rule

sample

training data

assumption

background knowledge

+

These assumptions are required to generalize training data




The assumptions might not always agree with a process of data 
generation in a real world 

Inductive Bias

=



Occam’s Razor
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Occam's Razor: Entities should not be multiplied beyond necessity




If models can explain a given data at the similar level, the simpler 
model is preferred

A small number of exceptional samples are 
treated as noise




The prediction for unseen cases would be 
more precise in general




Crucial rare cases can cause unexpected 
behavior

Any prediction, even if it was made by humans, is influenced by 
inductive biases, because the bias is caused in any generalization



Example of Inductive Bias
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Occam’s Razor: Preference of ML algorithms to simpler hypothesis 
to improve generalization error 

 Missing exceptional minor patterns


Smoothness: Smoother decision boundaries or curves to fit are 
preferred 

 Non-smooth changes cannot be represented


Sparseness: Preference to hypothesis consisting of the smaller 
number of features 

 Abandoning less effective features


Model Bias: A target hypothesis may not included in a model of 
candidate hypotheses 

 A learned hypothesis might not exactly match the target 
hypothesis



Instances of Data Biases
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Data / Annotation Bias
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Biases in Labels or Targets 
Historical records of approvals for loan requests might be influenced 
by prejudice towards a specific group

Ratings are affected by predicted ratings displayed when users rate 
items	 [Cosley+ 03]


Biases in Features of Objects 
Use of word statistics of training corpus are affected by a gender 
bias	 [Bolukbasi+ 16]

Admission to universities can be influenced by recommendation 
letters



Suspicious Placement Keyword-
Matching Advertisement
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Online advertisements of sites providing arrest record information 
Advertisements indicating arrest records were more frequently 
displayed for names that are more popular among individuals of 
African descent than those of European descent

African descent’s name European descent’s name

Arrested? 
negative ad-text

Located: 
neutral ad-text

[Sweeney 13]



Suspicious Placement Keyword-
Matching Advertisement
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Advertisement texts are chosen irrelevant to

the actual existence of a prior arrest of the target name

African descent’s name




Actually, no prior arrest 

European descent’s name




previously arrested

[Sweeney 13]



Suspicious Placement Keyword-
Matching Advertisement
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[Sweeney 13]

Selection of ad-texts was unintentional

Response from advertiser: 
Advertise texts are selected based on the last name, and no other 
information in exploited

The selection scheme is adjusted so as to maximizing the click-
through rate based on the feedback records from users by displaying 
randomly chosen ad-texts

No sensitive information, e.g., race, is exploited in a selection model, 
but suspiciously discriminative ad-texts are generated

 A data bias is caused due to the unfair feedbacks 
from users reflecting the users’ prejudice



Instances of Inductive Biases
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Recidivism Risk Score
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Recidivism Risk Score 
COMPAS (Correctional Offender Management Profiling for Alternative 
Sanctions) developed by Northpointe, used in many states

Evaluate the re-offending risk by a ten-point-scale 

Judges are given the scores in the process of pretrial release


Merits and Concerns pointed out by the ProPublica 
Key decisions in the legal process have been historically affected by 
personal biases

Scores can be exploited not for the designed purposes

Scores must accurately predict which defendants likely to re-
offend, but these are biased

[Angwin+ 16]



Recidivism Risk Score
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[Angwin+ 16]

Defendants of African descents were often predicted to be more 
risky than they actually were, and vice versa

0

20

40

60

80

Roughly the same

Not problematic

Overall Accuracy

0

20

40

60

African European

Recidivism Rates

Actual Predicted False

Positive


Rate

FPR for African is higher

Problematic

✽ FPR (false positive ratio) = ratio of # of actually non-recidivated to # 
of people predicted to recidivate



Rejoinder of US Federal Courts
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The merit of risk assessment tool 
It might be that the existing justice system is biased against poor minorities … 
regardless of  the degree of  bias, risk assessment tools informed by objective 
data can help reduce racial bias from its current level 

Rejoinder to ProPublica's study 
1. The COMPAS targets individuals on post-disposition supervision, 

but the ProPublica analyzed pretrial defendants

2. Collapsing mid- & high-risk categories is problematic

3. Distributions of observations given the predictions should be used, 

instead of distributions of predictions given observations

4. The standards, such as the federal Post Conviction Risk 

Assessment (PCRA), are ignored

5. Choosing improper the level of significance

[Flores + 16]



Rejoinder of US Federal Courts
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The COMPASS score is 
designed to satisfy the 
sufficiency, Y ⫫ S | Ŷ, following 
the standard of the federal Post 
Conviction Risk Assessment 
(PCRA)

The chart shows the actual 
arrest ratios given the predicted 
risk scores, in the any arrest 
case

The Northponte, a COMPAS 
developer, also pointed out this 
problem [Dieterich+ 2016]

   

     

0  

100% 

80% 

60% 

40% 

20% 

0% 
Low Medium High 

Recidivism Percent Recidivism 
Rate White Black Rate Black 

[Flores + 16]

The COMPAS satisfies a fairness condition, sufficiency
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[Kleinberg+ 18]
Pretrial Bail Decisions


Arrest records in New York City between Nov. 1, 2008 − Nov. 1, 2013

• male=83.2%, African American=48.8%, Hispanic=33.3%

• release=73.6%  failure to appear=15.2%, rearrested=25.8%

Judges decide whether defendants to release or detain, based on a 
checklist and the information judges see, such as appearance

Algorithms use the information available to judges and age, but 
ignore the information judges see

Algorithms Improve Judges' Decisions 
If defendants were detained based on algorithm prediction until the 
level that judges of high-detention rate detained, algorithms would 
achieve:


at the same crime rate as judges  48.2% lower detention rate

at the same detention rate as judges  75.8% lower crime rate



Algorithms Improve Human Decisions
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[Kleinberg+ 18]

Algorithms Are Fairer Than Judges 
If a distribution of detained races is constrained to satisfy a fairness  
condition, algorithms reduce crime rate relative to judges:


no constraint  24.68%

match a distribution that judges detain  24.64% 
match a distribution of defendants (= statistical parity)  23.02% 
match lower of a distribution of defendants or a distribution that 
judges detain  22.74%

Judges Release High-Risk Defendants 
The riskiest 1% of defendants in prediction:


If released, fail to appear=57.3%, rearrested=62.7%




Judges release 48.5% of them



Bias in Image Recognition
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Auditing the image recognition API's for predicting a gender from 
facial images

Available  benchmark datasets of facial images is highly skewed to 
the images of males with lighter skin

Pilot Parliaments Benchmark (PPB) is a new dataset balanced in 
terms of skin types and genders


Skin types are lighter or darker based on the Fitzpatrick skin type

Perceived genders are male or female 

Facial-image-recognition API's by Microsoft, IBM, and Face++ are 
tested on the PPB dataset

[Buolamwini+ 18]



Bias in Image Recognition
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[Buolamwini+ 18]

darker 
male

darker 
female

lighter 
male

lighter 
female

Microsoft 6.0% 20.8% 0.0% 1.7%

IBM 12.0% 34.7% 0.3% 7.1%

Face++ 0.7% 34.5% 0.8% 7.1%

Error rates for darker females are generally worse than lighter males

Error rates (1 - TPR) in a gender prediction from facial images



Bias in Image Recognition
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[IBM, Buolamwini+ 18]

darker 
male

darker 
female

lighter 
male

lighter 
female

old IBM 12.0% 34.7% 0.3% 7.1%

new IBM 2.0% 3.5% 0.3% 0.0%

Error rates for darker females are improved

IBM have improved the performance by new training dataset and 
algorithm, before Buolamwini's presentation, 



Inductive Bias: Example
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[Calders+ 10]

US Census Data : predict whether their income is high or low

Male Female
High-Income 3,256 590
Low-income 7,604 4,831

fewer

In this original data set: 
The number of High-Male data is 5.5 times that of High-Female data

While 30% of Male data are High income, only 11% of Females are

Females are minority in the high-income class



Inductive Bias: Example
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Due to an inductive bias, 
the minor information of high-income females is ignored

Odds ratio: to evaluate the influence of a gender to an income

ratio of the odds to be high-income for males to that for females

Odds ratio = Pr[High,Male]_Pr[Low,Male]
Pr[High,Female]_Pr[Low,Female]

[Calders+ 10]

Directly derived

from an observed sample


odds ratio = 3.51

Derived by a naive Bayes 
model w/o a gender feature


odds ratio = 5.26

The increase of the odds ratio implies that

a gender has stronger impact on an income
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Part Ⅱ 
Formal Fairness



Basics of Formal Fairness 
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Formal Fairness
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In fairness-aware machine learning, we manage the influence:

sensitive information target / objective

socially sensitive information

information restricted by law

information to be ignored

university admission

credit scoring

crick-through rate

Formal Fairness 
The desired condition defined by a formal relation between sensitive 
feature, target variable, and other variables in a model

Influence

Which set of variables are involved?

How are these variables related?

What states of sensitives or targets should be controled?



Notations of Variables
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target variable / object variable 
An objective of decision making, or what to predict 

Ex: loan approval, university admission, what to recommend

 = observed / true,  = predicted,  = fairized


Y=1 advantageous decision / Y=0 disadvantageous decision 
sensitive feature 

To ignore the influence to the sensitive feature from a target 
Ex: socially sensitive information (gender, race), items’ brand 
S=1 non-protected group / S=0 protected group 
Specified by a user or an analyst depending on his/her purpose

It may depend on a target or other features

	 non-sensitive feature vector 

All features other than a sensitive feature

Y

Y ̂Y Y∘

S

X



Other Notations
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Explainable variables are confounding variables with Y and S, and their 
influence can be ignored because of legal or other reasons

explainable / unexplainable non-sensitive feature / X(e) X(ē)

dataset

Each datum is a triple of a target value, yi, a sensitive value, si, and non-
sensitive feature values, xi

sensitive group

a group consisting of the same sensitive value

If si = 0 indicates a minority individual to protect, , is called a 
protected group, and the rest of dataset, , is called a non-
protected group

𝒟(0)

𝒟(1)

𝒟 = {yi, si, xi}2
i=1

𝒟(s) = {yi, si, xi}n(s)
i=1 s.t. si = s



Type of Formal Fairness
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association-based fairness 
defined based on statistical association, namely correlation and 
independence

mathematical representation of ethical notions, such as distributive 
justice


counterfactual fairness 
causal effect of the sensitive information to the outcome

maintaining a counterfactual situation if the sensitive information was 
changed


economics-based fairness 
using a notion of a fairness in game theory or econometrics



Accounts of Discrimination
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Why an instance of discrimination is bad?

harm-based account: Discrimination makes the discriminatees 
worse off

disrespect-based account: Discrimination involves disrespect of 
the discriminatees and it is morally objectionable


An act or practice is morally disrespectful of X  
 It presupposes that X has a lower moral status than X  in fact 

has




Techniques of Fairness-Aware Machine Learning 
based on the harm-based account 

The aim of FAML techniques remedy the harm of discriminatees

[Lippert-Rasmussen 06]



Regulations & Laws Related to 
Association-Based Fairness
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Quantitative restrictions by regulations or laws against discrimination:

Anti-Discrimination Act (Australia, Queensland) 

a person treats, or proposes to treat, a person with an attribute less 
favorably than another person without the attribute 

Racial Equality Directive (EU) 
shall be taken to occur where one person is treated less favorably than 
another is in a comparable situation on grounds of  racial or ethnic origin 

Uniform Guidelines on Employee Selection Procedure (US, EEOC) 
a selection rate for any race, sex, or ethnic group which is less than four-
fifths (or eighty percent) of  the rate for the group with the highest rate will 
generally be regarded as evidence of  adverse impact

[Pedreschi+ 09]



Regulations & Laws Related to 
Association-Based Fairness
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Title VII of the Civil Rights Act of 1964 
Prohibit to discrimination due to race, religion, gender, and ethnicity


Hazelwood School District v. United States, 433 U.S. 299 (1977) 
Evidence of  long-lasting and gross disparity between the composition of  
a workforce and that of  the general population thus may be significant even 
though § 703(j) makes clear that Title VII imposes no requirement that a 
workforce mirror the general population 
Where gross statistical disparities can be shown, they alone may, in a 
proper case, constitute prima facie proof  

Gross Statistical Disparity: Discrimination in employment is 
determined whether the ratio of protected and non-protected groups 
of employees is diverged from the corresponding ratio in general 
population

[Ishiguro+ 14]



Baselines in Harm-based Account
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A harm-based account requests a baseline for determining

whether the discriminatees have been made worse off




Ideal outcome: the discriminatees are in just, or the morally best 

 association-based fairness: letting predictors get ideal 
outcomes

Counterfactual: the discriminatees had not been subjected to the 
discrimination 

 counterfactual fairness: comparing with the counterfactuals that 
a status of a sensitive feature was different

[Lippert-Rasmussen 06]



Association-Based Fairness: 
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Independence
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(unconditional) independence

conditional independence

context-specific independence

A pair sets of variables, Y and S, are not influenced from each other


Y ⫫ S

Y and S are independent, if conditional variables, X, are fixed




✽ Conditional independence doesn’t imply independence, and vice versa

Y ⫫ S | X

Y and S are independent, if X are fixed to specific values, x	 [Boutiller+ 96] 

 
✽ Notation with a symbol ‘⫫’ (Unicode 2AEB) is called Dawid’s notation

Y ⫫ S | X=x



Independence
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(Unconditional) Independence: 
Y ⫫ S
Pr[Y, S] = Pr[Y ] Pr[S] ⟺ Pr[Y ∣ S] = Pr[Y ]

Pr[Y=1]

Pr[Y=0]

Pr
[Y

=1
 | S

=0
]

Pr
[Y

=0
 | S

=0
]

Pr[S=0] Pr[S=1]

Pr[Y=1 | S=1]
Pr[Y=0 | S=1]

Y=1
S=1

Y=0
S=1

Y=0
S=0

Y=1
S=0

Pr[Y=1]

Pr[Y=0]
Pr

[Y
=1

 | S
=0

]
Pr

[Y
=0

 | S
=0

]

Pr[S=0] Pr[S=1]

Pr[Y=1 | S=1]
Pr[Y=0 | S=1]

Y=1
S=1

Y=0
S=1

Y=0
S=0

Y=1
S=0

dependent independent
Pr[Y=1 ∣ S=0] ≠ Pr[Y=1] Pr[Y=1 ∣ S=1] ≠ Pr[Y=1] Pr[Y=1 ∣ S=0] = Pr[Y=1] Pr[Y=1 ∣ S=1] = Pr[Y=1]



Conditional Independence
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Pr[Y=1 ∣ X=0]

Pr[Y=0 ∣ X=0]

Pr[Y=1 ∣ X=1]

Pr[Y=0 ∣ X=1]

Pr
[Y

=1
 | S

=s
, X

=0
]

Pr
[Y

=0
 | S

=s
, X

=0
]

Pr[X=0] Pr[X=1]

Pr[Y=1 | S=s, X=1]
Pr[Y=0 | S=s, X=1]

S=0 S=1 S=0 S=1

Y=1
S=0, X=0

Y=1
S=1, X=0

Y=1
S=0, X=1

Y=1
S=1, X=1

Y=0
S=0, X=0

Y=0
S=1, X=0

Y=0
S=0, X=1

Y=0
S=1, X=1

Pr[Y=1 ∣ X=0]

Pr[Y=0 ∣ X=0]

Pr[Y=1 ∣ X=1]

Pr[Y=0 ∣ X=1]
Pr

[Y
=1

 | S
=s

, X
=0

]
Pr

[Y
=0

 | S
=s

, X
=0

]

Pr[X=0] Pr[X=1]

Pr[Y=1 | S=s, X=1]
Pr[Y=0 | S=s, X=1]

S=0 S=1 S=0 S=1

Y=1
S=0, X=0

Y=1
S=1, X=0

Y=1
S=0, X=1

Y=1
S=1, X=1

Y=0
S=0, X=0

Y=0
S=1, X=0

Y=0
S=0, X=1

Y=0
S=1, X=1

Conditional Independence: 
Y ⫫ S ∣ X
Pr[Y, S ∣ X] = Pr[Y ∣ X] Pr[S ∣ X] ⟺ Pr[Y |S, X] = Pr[Y ∣ X]

dependent independent
Pr[Y=1 ∣ S=s, X=0] ≠ Pr[Y=1 ∣ X=0] Pr[Y=1 ∣ S=s, X=0] = Pr[Y=1 ∣ X=0]

Pr[Y=1 ∣ S=s, X=1] ≠ Pr[Y=1 ∣ X=1] Pr[Y=1 ∣ S=s, X=1] = Pr[Y=1 ∣ X=1]



Unconditional & Conditional 
Independence
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Y=
1

Y=
0

X=0 X=1

Y=1
Y=0

S=1S=1 S=0S=0

3

208

12 30

7

6

14
Y=

1
Y=

0

S=0 S=1

Y=1
Y=0

6 + 12
= 18

3 + 30
= 33

7 + 20
= 27

14 + 8
= 22

Conditional independence does not imply

unconditional independence in general


S ⫫ Y ∣ X   S ⫫ Y

Conditionally Independent Unconditionally Dependent



Unconditional & Conditional 
Independence
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Y=
1

Y=
0

X=0 X=1

Y=1
Y=0

S=1S=1 S=0S=0

15

1510

10 15

5

20

10
Y=

1
Y=

0

S=0 S=1

Y=1
Y=0

20 + 10
= 30

15 + 15
= 30

5 + 15
= 20

10 + 10
= 20

Inversely, unconditional independence does not imply

conditional independence in general


S ⫫ Y ∣ X   S ⫫ Y

Conditionally Dependent Unconditionally Independent



Simpson's Paradox
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Admission to the Univ. of California, Berkeley, for the fall 1973 quarter 
Aggregated data for the campus


Admission rate: male=44% female=35%  discriminative

Grouped by the departments 

Among 85 departments, females are fewer in 4 departments and 
males are fewer in 6 departments  non-discriminative




This case is not discriminative, because more females were applied 
to the department whose admission rate was lower

[Bickel+ 75]

Simpson's Paradox: Numerical facts that the results obtained from a 
whole dataset is processed are contradicted with the results obtained 
when a dataset is grouped or stratified 

even the naive question could not answered adequately without 
recourse to sophisticated methodology and careful examination of 
underlying process



Simpson's Paradox

55

[Pearl+ 18]
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exercise exercise
age=10s

age=20s

age=30s

age=40s

age=50s

"Cholesterol" and "exercise" 
are positively correlated, if all 
data are aggregated

If grouped by "age",  they are 
negatively correlated, because 
cholesterol of aged people tends 
to be higher



I(S; Y)

H(Y)

H(Y | S)

H(S | Y)

H(S)

Information-Theoretic Interpretation

56

statistical parity, S ⫫ Y, implies zero mutual information: I(S; Y) = 0



If the information about Y is known, no information about S cannot be 
gained, and vice versa

Sensitive: S

Target: Y



Information Theoretic Interpretation

57

Sensitive: S
Target: Y

Non-Sensitive: X

Mutual information, I(S; Y | X), shows the information gained  by 
knowing about Y in the information about S by knowing X (= H(S | X))

H(Y)

H(S)

H(S | Y, X)

H(Y | S, X)

H(X)H(X | S, Y)

I(Y; X | S)

I(S; X | Y) I(S; Y; X)

I(S; Y | X)



Markov Network
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[Bishop 06]

B

C

A

D
E

Markov network: undirected graphical model for probabilistic distribution

random variable

dependency
maximal clique

maximal subset of 
nodes composing a 
complete graph

Pr[A, B, C, D, E] = f(A, B, D)f(B, C, D)f(B, E)/Z

potential function

Each corresponds to one clique

standardized constant or 
partition function

Variables, A and C, are separated by removing B and D




conditional independence: A⫫C ∣ B, D



Correlation
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Independence implies no-correlation, but no-correlation does not 
generally imply independence




Continuous Variable


If X and Y follows Gaussian, no-correlation implies independence

Discrete Variable


If the rank of a frequency matrix for X and Y is 1, they are 
independent; If the matrix is singular, They are no-correlation 

 If X and Y are binary, no-correlation implies independence

independence ⇒ no-correlation

Correlation Coefficient 

 

✽  is a sample mean of .  and  are a variance and covariance, respectively.

ρ = Cov(X, Y )
Var(X) Var(Y )

=
∑i (xi − x̄)(yi − ȳ)

∑i (xi − x̄)2 ∑i (yi − ȳ)2

x̄ x Var(X) Cov(X, Y )



Partial Correlation
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The  (the partial correlation between x and y given z) is the 
correlation between  and . while removing the influence of  to  
and , respectively.

ρxy⋅z
x y z x

y

Partial Correlation Coefficient 

 

•  : a regression coefficient from  to .

•  

•  : correlation coefficient between  and .

ρxy⋅z =
Cov(Δxz, Δyz)

Var(Δxz) Var(Δyz)
=

ρxy − ρxzρyz

1 − ρ2xz 1 − ρ2yz

θxz z x
Δ(i)

xz = xi − θxzzi
ρxy x y



Association-Based Fairness: 
Criteria

61



Criteria of Association-Based Fairness
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Fairness through Unawareness — Fairness through Awareness 
Prohibition to access sensitive information during the process of 
learning and inference


Group Fairness — Individual Fairness 
Fairness for each group, OR fairness for each individual


Statistical Parity 
Satisfying the equality of outcome


Equalized Odds / Sufficiency 
Equalizing biases of prediction from observed data


Context-Sensitive Independence 
Fairness in Specific Contexts


Correlation-based Fairness 
Sensitive information correlates with a target variable



Association-Based Fairness

63

fairness 
through 

unawareness
statistical 

parity
equalized 

odds sufficiency

Ŷ ⫫ S | X Ŷ ⫫ S Ŷ ⫫ S | Y Y ⫫ S | Ŷ

awareness unaware aware

unit individual group

wordview WAE WYSIWYG

comments

treat like cases 
alike


alias: situation 
testing

equality of 
outcomes


alias: 
demographic 
parity, 
independence

equality of false 
positive and 
false negative 
rates


alias: 
separation

equality of 
positive and 
negative 
predictive 
values



Fairness through Unawareness

64

Fairness through Unawareness: Prohibiting to access individuals' sensitive 
information during the process of learning and inference

This is a kind of procedural fairness, in which a decision is fair, if it is made by 
following pre-specified procedure

Pr[ Ŷ | X, S ] 
A unfair model is trained from 
a dataset including sensitive 
and non-sensitive information

Pr[ Ŷ | X ] 
A fair model is trained from a 
dataset eliminating sensitive  
information

A unfair model, Pr[ Ŷ | X, S], is replaced with a fair model, Pr[ Ŷ | X ]

Pr[ Ŷ, X, S ] = Pr[ Ŷ | X, S] Pr[ S | X ] P[ X ]  Pr[ Ŷ | X ] Pr[ S | X ] Pr[ X ] 

 
Fairness through Unawareness: Ŷ ⫫ S | X



Pr
[Ŷ

=1
 | S

=s
, X

=0
]

Pr
[Ŷ

=0
 | S

=s
, X

=0
]

Pr[X=0] Pr[X=1]

Pr[Ŷ=1 | S=s, X=1]
Pr[Ŷ=0 | S=s, X=1]

S=0 S=1 S=0 S=1

Ŷ=1
S=0, X=0

Ŷ=1
S=1, X=0

Ŷ=1
S=0, X=1

Ŷ=1
S=1, X=1

Ŷ=0
S=0, X=0

Ŷ=0
S=1, X=0

Ŷ=0
S=0, X=1

Ŷ=0
S=1, X=1

a kind of procedural fairness  Fairness through Unawareness

Fairness through Unawareness

65

Ŷ ⫫ S ∣ X  
 

Pr[Ŷ, S ∣ X] = Pr[Ŷ ∣ X] Pr[S ∣ X]

These gaps indicate unfair 
decision 

A learned model directly 
access sensitive information



Group Fairness / Individual Fairness
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Target unit for which a fairness condition is satisfied




Individuals are equally treated as a group 
Instantiation of the ethical notion “distributive justice”

Implemented by match the aggregated statistics, such as means or 
errors, between groups

Ex: statistical parity, equalized odds, sufficiency




Individuals are treated alike regardless of group membership

Instantiation of the principle “treat like cases alike”

Implemented by conditioning on individuals, usually represented by 

, in a case of association-based fairness

Ex: individual fairness

Group Fairness

Individual Fairness

X



Group Fairness

67

Limitations of Group Fairness 
Individuals are differently treated in each group 

 some protected individual may receive disadvantageous decision

Reverse Tokenism: justify unfair treatment for members of a 
protected group by sacrificing a few superior members of a non-
protected group	 [Dwork+ 12]


 This cannot be prevented by achieving group fairness

Group Fairness: Outcomes of a target variable are equal for all 
sensitive groups as a whole


statistical parity: equal share between groups 
   

equalized odds: equal errors between group 
 

Pr[ ̂Y ∣ S = s] = Pr[ ̂Y ], ∀s ∈ Dom(S) ̂Y ⫫ S

Pr[ ̂Y ∣ S = s, Y ] = Pr[ ̂Y ∣ Y ], ∀s ∈ Dom(S) ̂Y ⫫ S ∣ Y



Individual Fairness

68

Individual Fairness: Implementation of the principle of “Treat like 
cases alike”

Distributions of a target variable are equal for all possible sensitive 
groups given a specific non-sensitive values


Pr[ Ŷ | S, X=x ] = Pr[Ŷ | X=x], ∀x ∈ Dom(X)  Ŷ ⫫ S | X 
Conditioning fairness criteria by  can be 

considered as individual fairness
X

Simple individual fairness and fairness through unawareness are 
the same in a mathematical form, , but not in their semantics




Situation Testing: Legal notion of testing discrimination, comparing 
individuals having the same non-sensitive values except for their 
sensitive information	 [Luong+ 11]

̂Y ⫫ S ∣ X
Ex: To satisfy individual fairness simultaneously with equalized odds, sensitive 

information must be observed, and this violates a condition of fairness 
through unawareness



Detection of Individual Fairness
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Probability distributions must be estimated for all non-sensitive values

Pr[ Y | S, X=x ] = Pr[Y | X=x], ∀x ∈ Dom(X) ⇔ Y ⫫ S | X 



To test individual fairness, it is practically impossible to observe 

data whose non-sensitive values are exactly same 



aggregate information of its neighbors	 [Luong+ 11]

A probability distribution, Pr[Y | S, X=x], is estimated from a dataset 
composed of the k-nearest neighbor of the point, x 

estimate its counterfactual case	 

Given a factual case in which  and , its counterfactual 
case in which  and  is estimated by assuming the 
underlying causal relations

X = x S = s
X = x S = s′ 



construct space observed space

Worldview and Bias

70

[Friedler+ 21]

Worldview is an assumption about mapping from construct space to 
observed space


construct space: underlying ideal features and decisions

observed space: observed features and decisions 

What You See Is What You Get 
Worldview


Mapping while keeping relative 
positions between groups

S=0

S=1

S=0

S=1

construct space observed space

S=0

S=1

S=0

S=1

We're All Equal Worldview 
Instances in different groups are 
mapped differently




data bias



Statistical Parity / Independence
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Ratios of predictions are proportional to the sizes of sensitive groups






Statistical Parity / Independence: 

Pr[Y=y1, S=s1]/ Pr[Y=y2, S=s2] = Pr[S=s1]/ Pr[S=s2] ∀y1, y2 ∈ Dom(Y ), ∀s1, s2 ∈ Dom(S)

̂Y ⫫ S

equality of outcome: Goods are distributed by following pre-
specified procedure

In a context of FAML, the predictions are distributed so as to be 
proportional to the sizes of sensitive groups

[Calders+ 10, Dwork+ 12]

Worldview: “We're All Equal” worldview is assumed, and so it is used 
for mitigating a data bias

Information theoretic view:


   has no information about ̂Y ⫫ S ⟺ I( ̂Y; S) = 0 ̂Y S



Ŷ = 1

S =
 1

Ŷ = 0

Ŷ = 1

Ŷ = 0

S =
 0

Statistical Parity / Independence

72

[Calders+ 10, Dwork+ 12, Barocas+ 19]

Ratios between positives and 
negatives in prediction should be 
matched among all sensitive groups

equality of outcome  Statistical Parity / Independence

Ŷ ⫫ S



equality of outcome  Statistical Parity / Independence

Pr
[Ŷ

=1
 | S

=0
]

Pr
[Ŷ

=0
 | S

=0
]

Pr[S=0] Pr[S=1]

Pr[Ŷ=1 | S=1]
Pr[Ŷ=0 | S=1]

Ŷ=1
S=1

Ŷ=0
S=1

Ŷ=0
S=0

Ŷ=1
S=0

Statistical Parity / Independence
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[Calders+ 10, Dwork+ 12, Barocas+ 19]

Ŷ ⫫ S  
 

Pr[Ŷ, S] = Pr[Ŷ] Pr[S]

This gap indicates unfair 
decision 

Ratios between positives and 
negatives in prediction should 
be matched among all 
sensitive groups



Equalized Odds / Separation
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True positive rates should be matched among all sensitive groups




False positive rates should be matched among all sensitive groups






Equalized Odds / Separation: 

Pr[ ̂Y=1 ∣ Y=1, S=s1] = Pr[ ̂Y=1 ∣ Y=1, S=s2] ∀s1, s2 ∈ Dom(S)

Pr[ ̂Y=1 ∣ Y=0, S=s1] = Pr[ ̂Y=1 ∣ Y=0, S=s2] ∀s1, s2 ∈ Dom(S)

̂Y ⫫ S ∣ Y

Removing inductive bias: calibrating inductive errors to observation

[Hardt+ 16, Zafar+ 17]

Worldview: “What You See Is What You Get” worldview is assumed, 
and so it is used for mitigating an inductive bias



FPR TPR

FPR TPR

Y = 0 Y = 1

S =
 1

S =
 0

Ŷ=1Ŷ = 0 Ŷ = 1Ŷ=0

Y = 0 Y = 1

Ŷ=1Ŷ = 0 Ŷ = 1Ŷ=0

Equalized Odds

75

[Hardt+ 16, Zafar+ 17, Barocas+ 19]

false positive ratio and

true positive ratio


should be matched

among all sensitive groups

Removing inductive bias  Equalized Odds / Separation

Ŷ ⫫ S | Y



Removing inductive bias  Equalized Odds / Separation

Pr
[Ŷ

=1
 | S

=s
, Y

=0
]

Pr
[Ŷ

=0
 | S

=s
, Y

=0
]

Pr[Y=0] Pr[Y=1]

Pr[Ŷ=1 | S=s, Y=1]
Pr[Ŷ=0 | S=s, Y=1]

S=0 S=1 S=0 S=1

Ŷ=1
S=0, Y=0

Ŷ=1
S=1, Y=0

Ŷ=1
S=0, Y=1

Ŷ=1
S=1, Y=1

Ŷ=0
S=0, Y=0

Ŷ=0
S=1, Y=0

Ŷ=0
S=0, Y=1

Ŷ=0
S=1, Y=1

Equalized Odds
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Ŷ ⫫ S ∣ Y  
 

Pr[Ŷ, S ∣ Y] = Pr[Ŷ ∣ Y] Pr[S ∣ Y]

These gaps indicate unfair 
decision 

False positive ratio (FPR) and 
true positive ratio (TPR) 

should be matched among all 
sensitive groups

[Hardt+ 16, Zafar+ 17, Barocas+ 19]



Sufficiency / Calibration
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Positive predictive values should be matched between any groups




Positive predictive values should be matched between any groups






Sufficiency / Calibration: 

Pr[Y=1 ∣ ̂Y=1, S=s1] = Pr[Y=1 ∣ ̂Y=1, S=s2] ∀s1, s2 ∈ Dom(S)

Pr[Y=0 ∣ ̂Y=0, S=s1] = Pr[Y=0 ∣ ̂Y=0, S=s2] ∀s1, s2 ∈ Dom(S)

Y ⫫ S ∣ ̂Y

Removing inductive bias: calibrating inductive errors to observation

Worldview: “What You See Is What You Get” worldview is assumed, 
and so it is used for mitigating an inductive bias

In psychology or education disciplines, this criterion is accepted as a 
fairness condition	 [Chouldechova 17]

[Flores+ 16, Chouldechova 17, Barocas+ 19]



PPV

PPVNPV

NPV

S =
 1

S =
 0

Ŷ = 1Ŷ = 0

Y = 0 Y=1 Y=0 Y=1

Ŷ = 1Ŷ = 0

Y = 0 Y=1Y=0 Y=1

Sufficiency

78

Positive and Negative

Predictive Values (PPV & NPV)


should be matched

among all sensitive groups

Ŷ ⫫ S | Y

Removing inductive bias  Sufficiency / Calibration

[Flores+ 16, Chouldechova 17, Barocas+ 19]
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=0
 | S
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, Ŷ

=0
]

Pr[Ŷ=0] Pr[Ŷ=1]

Pr[Y=1 | S=s, Ŷ=1]
Pr[Y=0 | S=s, Ŷ=1]

S=0 S=1 S=0 S=1

Y=1
S=0, Ŷ=0

Y=1
S=1, Ŷ=0

Y=1
S=0, Ŷ=1

Y=1
S=1, Ŷ=1

Y=0
S=0, Ŷ=0

Y=0
S=1, Ŷ=0

Y=0
S=0, Ŷ=1

Y=0
S=1, Ŷ=1

Sufficiency
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Y ⫫ S ∣ Ŷ  
 

Pr[Y, S ∣ Ŷ] = Pr[Y ∣ Ŷ] Pr[S ∣ Ŷ]

These gaps indicate unfair 
decision 

Precisions for positive and 
negative classes should be 

matched among all sensitive 
groups


✽ Ŷ and Y are exchanged from 
the separation case

Removing inductive bias  Sufficiency / Calibration
[Flores+ 16, Chouldechova 17, Barocas+ 19]



α-protection	 [Pedreschi+ 08]


Pr[Ŷ=1 | S=0, X=x] / Pr[Ŷ=1 | X=x] ≦ α

α-protection is the context-specific independence, Ŷ ⫫ S | X=x


Equalized Odds / Equal Opportunity 	 [Hardt+ 16]

Equalized odds is conditional independence, Ŷ ⫫ S | Y 
Equal Opportunity is context-specific independence, Ŷ ⫫ S | Y=1  

Sufficiency / Predictive Parity 	 [Chouldechova 17]

Sufficiency is conditional independence, Y ⫫ S | Ŷ 
Predictive Parity is context-specific independence, Y ⫫ S | Ŷ=1

Context-Specific Independence

80

Context-Specific Independence: Y and S are independent, if X are 
fixed to specific values, x

[Boutiller+ 96]



Correlation-Based Fairness

81

Fairness in DM/ML has been discussed from 2010s




A statistics literature had discussed fairness criteria in 1960 — 70s

after the US Civil Rights Act, 1964

Statistical Parity / Independence 
Darlington (1971) criterion 4


Equalized Odds / Separation 
Cleary (1968), Darlington (1971) criterion (1), Linn (1973)


Sufficiency / Calibration 
Darlington (1971) criterion (2)

ML / DM 
Independence 

Conditional Independence 
Discovery & Prevention

Statistics 
Correlation 

Partial Correlation 
Discovery only

[Hutchinson+ 19]



Association-Based Fairness: 
Properties

82



Properties of Formal Fairness

83

Disparate treatment — Disparate Impact 
Groups or individuals are intentionally treated differently, OR

Unintentional impact on distinct groups or individuals


Direct Discrimination — Indirect Discrimination 
Sensitive information influences targets directly, or indirectly


Type of Biases to Remove 
Fairness criteria are designed to remove a specific type of bias


Relation between Fairness Criteria 
One criterion implies or conflicts with other criterion


Explainable Variable 
Exclusion of the explainable confounding effects between 
sensitives and targets



Disparate Treatment / Disparate Impact
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[Barocas+ 17, Feldman+ 15]

Disparate Treatment Disparate Impact
equality of opportunity 

tolerant to unequal outcome
equality of outcome 

allow reverse discrimination

procedural fairness 
eliminate sensitive information

distributive justice 
fair allocation of goods

intended 
direct or intentional reference


of sensitive information

unintended 
indirect reference


of sensitive information

legal notions about fairness



Direct Discrimination & 
Indirect Discrimination

85

[Pedreschi+ 08, Žliobaitė+ 16]

technical notions about fairness

Direct Discrimination 
discrimination on the basis 
of sensitive information

Indirect Discrimination 
discrimination on the basis 
of other features resulting in 
direct discrimination

Disparate Treatment 
Strictly speaking, disparate 
treatment includes intended 
indirect reference to sensitive 
information

These technical notions are 
often expressed by legal terms

Disparate Impact 
Strictly speaking, whether or not 
the reference is intended should 
be cared in a disparate impact 
case



Red-Lining Effect
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Red-Lining Effect: Simple elimination of a sensitive features from 
training dataset fails to remove the influence of sensitive information 
to a target

This corresponds to conditional independence: Ŷ ⫫ S | X (not Ŷ ⫫ S)

S still influences Y through X

[Calders+ 10]

Eliminating sensitive information is equivalent to replacing an unfair 
model,  with a fair model, 




Pr[ Y, X, S ] = Pr[ Y | X, S] Pr[ S | X ] P[ X ]  Pr[ Y | X ] Pr[ S | X ] Pr[ X ]

Pr[Y |X, S] Pr[Y |X]



Red-Lining Effect
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Red-Lining Effect: Elimination of a sensitive information from training 
dataset fails to remove the influence of the information to a target

[Calders+ 10]

fairness through unawareness = eliminating a sensitive feature

[Wikipedia]

Ex: People of the same race frequently 
resident in a specific region




Even if their race are not explicitly 
referred, the information is included in 
that of their residential region

Distributive justice cannot be satisfied 
under fairness through unawareness



Types of Bias to Remove
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Three sources of biases that undesirably corrupt outcomes 
Data / Annotation Bias: unfair labeling by annotators; 
inappropriately observed feature values

Sample Selection Bias: dataset that is not a representative of 
population to analyze 
Inductive Bias: propensity of ML algorithms caused by 
assumptions  in the algorithms’ inductive process




Sources of undesired outcomes depends on problems

Formal fairness have to be selected by considering  
which type of biases tries to remove



Removing Data Bias
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Data / Annotation Bias: Target values or feature values in a training 
data are biased due to annotator’s cognitive bias or inappropriate 
observation schemes

data are not reliable, and never accessible to a fair dataset




Assumptions about the conditions that values or distributions of 
target variables and sensitive features should satisfy

Examples of assumptive conditions: 
Ŷ ⫫ S : statistical parity

Ŷ ⫫ S | X : fairness through unawareness 
Ŷ ⫫ S | X=x : Y and S are context-sensitive independent given X=x



Removing Sample Selection Bias
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Sample Selection Bias: Whether a datum is sampled depends on   
conditions or contents of the datum, and thus an observed dataset 
is not a representative of population

Batch Learning: Training data violates a condition of random 
assignment in terms of sensitive information 

incorrectly annotated by an ML algorithm 
 modify an inductive bias of the ML algorithm


not sampled uniformly at random, as seen in a statistical survey 
 modify data so as to satisfy a condition of random assignment


Online Learning: Selection of data to test is biased in an ML tasks 
with a feedback loop, e.g., bandits, reinforcement learning, active 
learning


biased selection of data to test or investigate 
 select randomly in terms of sensitive information



Removing Inductive Bias
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Inductive Bias: a bias caused by an assumption adopted in an 
inductive machine learning algorithms

Ŷ ⫫ S | Y : Equalized Odds / Separation




Empirical errors of Ŷ over sample outcomes, Y, are equal

for all groups consist of the same sensitive values

=

Outcomes in a training dataset, Y, are assumed to be reliable,

and the prediction, Ŷ, might be different from the observed, Y.




The changes from Y to Ŷ should be balanced 

between sensitive groups defined by S



Satisfiablity between Fairness Criteria
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statistical parity 
Ŷ ⫫ S 

equality of outcome

sufficiency 
Y ⫫ S | Ŷ 

Calibrating predictive 
values

fairness through 
unawareness 

Ŷ ⫫ S | X 
unaware sensitive info

equalized odds 
Ŷ ⫫ S | Y 

Calibrating prediction 
errors to observation

group fairness
 mutually exclusive criteria

 simultaneously satisfiable criteria

[Žliobaitė+ 16]
[Kleinberg+ 16,


Chouldechova 17]



Fairness through Unawareness & 
Statistical Parity

93

Ŷ

X

S

S ⫫ X Ŷ ⫫ X

Satisfying fairness through unawareness, S ⫫ Ŷ | X




To simultaneously satisfy statistical parity, S ⫫ Ŷ,

a condition of S ⫫ X OR Ŷ ⫫ X must be satisfied

S ⫫ X: a sensitive feature and non-sensitive features are independent

unrealistic  X and  are uncontrollable, and X is high-dimensional


Ŷ ⫫ X: a sensitive feature and a target variable are independent

meaningless  Ŷ must be random guess

S

Simultaneous satisfaction of individual fairness 
and statistical parity is unrealistic or meaningless

[Žliobaitė+ 16]



Equalized Odds & Statistical Parity

94

Ŷ

Y

S

S ⫫ Y Ŷ ⫫ Y

Equalized odds, S ⫫ Ŷ | Y, is satisfied




To simultaneously satisfy statistical parity, S ⫫ Ŷ,

a condition of S ⫫ Y OR Ŷ ⫫ Y must be satisfied

S ⫫ Y: a observed class and non-sensitive features are independent

violating an assumption  observed classes are already fair


Ŷ ⫫ Y: a sensitive feature and a target variable are independent

meaningless  Y depends on X and Ŷ must be random guess

Simultaneously satisfying equalized odds and statistical parity 
is meaningless



Impossibility between 
Sufficiency and Equalized Odds

95

Well-calibration (= sufficiency): 
True class distribution given the prediction is independent from groups




Balance for the positive and negative classes (= equalized odds): 
TPR and NPR are equal between sensitive groups







Perfect prediction: 

Equal base rates: 

Pr[Y ∣ ̂Y = ̂y] = Pr[Y ∣ ̂Y = ̂y, S = s], ∀ ̂y, s

Pr[ ̂Y = 1 ∣ Y = y, s = 0] = Pr[ ̂Y = 1 ∣ Y = y, s = 1], ∀y

Pr[Y = 1 ∣ x] ∈ {0,1}, ∀x ∈ Dom(X)
Pr[Y = 1 ∣ S = 0] = Pr[Y = 1 ∣ S = 1] ≡ Y ⫫ S

[Kleinberg+ 16]

Satisfying sufficiency and equalized odds implies distributions of 
true class must be either perfect prediction or equal base rates 

 
Sufficiency and Equalized odds cannot be satisfied simultaneously 
in general
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Individual Fairness & Equalized Odds
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individual fairness

equalized odds Equalized odds, , and 
individual fairness, , can be 
simultaneously satisfiable

The resultant combined condition is:





A condition, , is weaker 
than the combined condition, but what 
the two criteria are intended to 
accomplish is fulfilled 

̂Y ⫫ S ∣ Y
̂Y ⫫ S ∣ X

Pr[ ̂Y, Y, S, X] =
Pr[ ̂Y ∣ X] Pr[S ∣ X] Pr[X]
Pr[ ̂Y ∣ Y ] Pr[S ∣ Y ] Pr[Y ]

̂Y ⫫ S ∣ X, Y



Explainable Variable
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Explainable Variable / Legally-grounded Variable: these variables 
influence both target and sensitive variables, and the influence is not 
semantically problematic

[Žliobaitė+ 11, Kamiran+ 13]

sensitive S target Y

explainable X(e)

In FAML, we are interested in the pure effect from a sensitive feature to 
a target excluding the spurious effect of an explainable variable

genuine occupational requirement: the nature of he role makes it 
unsuitable for individuals with a particular sensitive value


Ex: Fashion model for feminine clothes should be female



Fair Determination
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[Žliobaitė+ 11, Kamiran+ 13]

sensitive feature: S 
gender


male / female

target variable: Y 
admission


admit / not admit

Fair determination: the gender does not influence the acceptance

↓


(unconditional) independence: Y ⫫ S

An example of university admission in [Žliobaitė+ 11]

Is the target determination fair in terms of a sensitive state



Causality with Explainable Features
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sensitive feature: S 
gender


male / female

target variable: Y 
admission


admit / not admit

Removing the pure influence of S to Y, excluding the effect of 

↓


conditional statistical independence:  ⫫  | 

X(e)

Y S X(e)

explainable feature:  
(confounding feature) 

department

medicine / computer

X(e)

medicine → admission=low

computer → admission=high

female → medicine=high

male → computer=high

An example of fair determination

even if S and Y are not independent

[Žliobaitė+ 11, Kamiran+ 13]



Association-Based Fairness: 
Measures
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Difference-based Measures
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balanced error ratio [Feldman+ 15] 
mean of the probability of the disadvantageous decision for a non-
protected group and the probability of the advantageous decision for  
protected group




BER → 1/2  Y ⫫ S

BER = Pr[ �� = 0�� = 1] + Pr[ �� = 1�� = 0]2 = 1 � RD2<latexit sha1_base64="R7i23z7o5EpLlh1EJgQsf6ocPzE=">AAADZ3ichVJbaxNBFP6a1VrrJamCFHwZDRFBDLOpoBQCwQvoW7pp2kg2pLvrpFm6N3YnoXXNH/DFRx98UcEH8WcI4h/woT+h6Fu9PSh4drOh1dJ6ltk5881853xz5piBY0eS8+2pnHLs+PSJmZOzp06fOZsvzJ1bifxBaImm5Tt+2DKNSDi2J5rSlo5oBaEwXNMRq+bGnWR/dSjCyPa9ZbkViI5rrHt2z7YMSVC3sKa7huyHbnz7njZiVab3QsOK9XrY1vuGjB+Oqpw9YY2q2mHX2H5YTWHeGcWVPZ7KrrNJQO3uKNnrFoq8zFNjBx01c4rIrO4XfkLHI/iwMIALAQ+SfAcGIvraUMERENZBTFhInp3uC4wwS9wBnRJ0wiB0g/7rtGpnqEfrJGaUsi3K4tAIiclQ4p/4W77LP/J3fIf/OjRWnMZItGzRbI65Iujmn843fvyX5dIs0d9jHalZoodbqVabtAcpktzCGvOHj5/vNha1UnyFv+afSf8rvs3f0w284VfrzZLQXlD0Etiz39pLbfqITB5VIYm8mdU1Squ6ico4D42JbkaK/PRNFslvYBkP0NqHHn7/SYRJ3ZLaR8mbUYuo/zbEQWelUlYXyurSjWKtljXLDC7iMq5SR9xEDfdRR5MyfsAXfMP33I6SVy4o8+OjuamMcx5/mXLpD7wszBU=</latexit>

risk difference / mean difference [Calders+ 10, Pedreschi 09] 
Difference of receiving advantageous decisions between groups




RD → 0  Y ⫫ S

equivalent to the total causal effect of changing S on Ŷ

RD = Pr[ �� = 1�� = 1] � Pr[ �� = 1�� = 0]
<latexit sha1_base64="cZ1Bwn4yIilKB+8o3NxFB1XBek8="></latexit>



the ratio of the confidence of a rule with a sensitive condition,

to that of a rule without the condition

elift (extended lift) = 𝖼𝗈𝗇𝖿(X=x, S=0 ⇒ Y=0)
𝖼𝗈𝗇𝖿(X=x ⇒ Y=0)

elift (extended lift)
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[Pedreschi+ 08, Ruggieri+ 10]

The condition elift = 1 means that no unfair treatments, and it implies

Pr[ Y=0 | S=0, X=x ] = Pr[ Y=0 | X=x ] 

when S and Y are additionally binary variables,

This condition is equivalent to the context-sensitive independence:


Y ⫫ S | X=x 
↓


Useful for finding unfair effects from S to Y under the context of X=x



Measures from Contingency Table
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Ŷ = 0 Ŷ = 1
S = 0 a1 n1 − a1

S = 1 a2 n2 − a2

[Pedreschi+ 09, Hajian+ 16, Zhang 18]

�1 = Pr[ ��=0 � �=1] = �1�1
<latexit sha1_base64="ralhkApXtX2iSom+3hwCvCSaBe4="></latexit>

�0 = Pr[ ��=0 � �=0] = �0�0
<latexit sha1_base64="mWaKlr2N9h2pGhHOyiKiMDUTB9E="></latexit>

� = Pr[ ��=0] = �0 + �1�0 + �1
<latexit sha1_base64="I58tO0nGo1qBGwpQVK36TGnpn68="></latexit>

risk difference / mean difference / sliftd�0 � �1 =
<latexit sha1_base64="VpiypWlMxDiVnoUYvulxEfa8ty8="></latexit>

risk ratio / relative risk / slift�0��1 =
<latexit sha1_base64="yIzazTIaWzZfSf5U12GXvRaLOo8=">AAADEHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRfEGyjoKxTEGyrYxgsoG+gZgIECJsMQylBmgIKAfIEfDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzQaarsqg0P83aEEQGx6b8oChADK5AhquxeBQrWAwgtgDxDB3KwBdlA+OEysgO5ghhMGTIQJJFLf/YSbAwg0U9sWgOAMmEUP0BIHJCDPSMzTWMww0UXawgSYWDgZpBiUGDWCKMGdwYPBgCGAIBcfpVIZ5DPOZJjHtYNrPdBCilIkRqkeYAQUwnQIA8suuoQ==</latexit>

odds ratio / olift
�0(1 � �1)�1(1 � �0) =

<latexit sha1_base64="xaOx7pTF4s+ibZ3fN/1RQPHdrJ8="></latexit>

(1 � �0)�(1 � �1) =
<latexit sha1_base64="4oRzNiOnJc844r+7RD2SIIzDNjU="></latexit>

relative chance

extended risk ratio / elift�0�� =
<latexit sha1_base64="T1ySpb61yR9IecNjjHOjUlOK/fM="></latexit>

extended risk difference / eliftd�0 � � =
<latexit sha1_base64="QN3xZkIlnZs2bLY1sOp2rDpI8Ko="></latexit>



Counterfactual Fairness
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Counterfactual Fairness: 
Basics of Causal Inference

105



Pearl's Ladder of Causation
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[Pearl+ 18]

Association

Intervention

Counterfactuals Activity: Imaging, Retrospection, Understanding

Questions: What if I had done …? Why?

Examples: Was it the aspirin that stopped my 

headache?

Activity: Doing, Intervening

Questions: What if I do …? How?

Examples: If I take aspirin, will my head ache be 

cured

Activity: Seeing, Observing

Questions: What if I see …?

Examples: What does a symptom tell me about a 

disease?



Structural Causal Model
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Structural Causal Model: represents causal dependency

, ,  are observed, and 's are unobserved (usually omitted)

The SCM is Markovian, if exogenous variables are mutually independent
S X Y U

S ∼ fS(X, US)
X ∼ fX(UX)

Y ∼ fY(S, X, UY)

Formula Representation Graphical Representation 

S Y

X

S Y  is a direct cause of an effect S Y
 might cause , and vice versaS YS Y

UX

UYUS

admissiongender
university admission

department
exogenous variables



Intervention
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S Y

X

admissiongender

department

Association 
Pr[Y ∣ S = s]

Intervention 
Pr[Y ∣ do(S = s)]

S Y

X

admissiongender

department

Select the cases  ,

without any modifications

on the model

S = s After deleting all the in-links

to the intervened variable,

set S = s

Observing , where Y S = s How  would be changed,

If  is changed to  

Y
S s



delete the in-link to 

do(S = s)
S



Association vs. Intervention
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[Pearl+ 18]

Department selection of applicants in university admission 
Applicants who prefers a philosophy department are talented in history,


and those who prefers a computer science are talented in math

Association

prefers 
comp. sci.

prefers 
philosophy 

assigned to their preferred dep. 



talents are unbalanced between deps.







Applicants' talents might influence 
the outcomes

M H M H

Intervention

assigned randomly 



talents are balanced between deps.







The effects of applicants' talents 
are balanced and can be ignored

prefers 
comp. sci.

prefers 
philosophy 

M H M H



Counterfactual
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Notations of counterfactual situations 
In the factual world, a person of the minority group having ability  is declined.


The probability that the person would be declined,

if the person were the majority group?

x

✽ As a short hand for ,  or  is used, if it's apparent from contextsYX=0 Yx0
Y0

 is a sensitive variable, 0  minority, 1  majority

 is an outcome, 0  declined, 1  admitted

 are non-sensitive variables, indicating personal ability

S
Y
X

Pr[YS=1 = 0 ∣ X = x, S = 0]
People whose ability is 


in the factual world
x

People of the minority group

in the factual world

Admission is declined

in the counterfactual world

The outcome in the counterfactual world

where the people belonged to the majority group



Counterfactual: Computation Steps
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The person whose personality is  and group is  is declined 
in admission, , and then, what if the person's group were ?

X=x S=0
Y= 0 S=1

S=0 Y=0

X=x UX

UYUS

1. Abduction: predict exogenous situation 
that can cause the observed facts: 
Pr[{US, UX, UY} ∣ ℱ={S=0,X=x, Y=0}]

factsexogenous variables

facts

2. Action: intervention:

do(S = 1)

S=1 Y=0

X UX

UYUS

do(S = 1)

remove

in-links

3. Prediction: Predict the expectation of 
the outcome, , given the distribution in 
step 1 and using the model in step 2

Y
S=1 Y=0

X UX

UYUS

Pr[UY ∣ ℱ]

Pr[UX ∣ ℱ]



Rubin's Conditions
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A counterfactual outcome, , if a sensitive feature, S, was changed 
s from s', could be estimated by conditioning by non-sensitive features 
(confoundings), X


Stable Unit Treatment Value Assumption (SUTVA) 
Each individual will have the same effect of treatment regardless of 
what treatment the other individuals receive


Consistency 
The same effect that is observed by experimental design will be 
observed in a real world


Ignorability 
The potential outcome, , is independent of the treatment actually 
received, , given the values of a certain set of confoundings,  

YS=s′ 

Ys
S X

[Pearl+ 18]



Ignorability
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[Pearl+ 18]
Example of the violation of ignorability

An Employee's salary, Y, depends on their “Years of Education”, S, 
and “Years of Experience”, X 



If an employee had received longer years of education, how much 
their salary would be

longer years of education

 shorter years of experience

Y. of Experience, X

Y. of Education, S

Salary, Y

Due to the conditioning of X, the 
influence of S on Y through X is  
distorted 

the violation of ignorability



Propensity Score
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Propensity Score: probability to be a protected group given an 
explainable values, e(S) = Pr[ S=0 |  ] 

propensity score can be used for eliminating the effects of 
explainable variables due to its balancing property: S ⫫  | e(S) 



If S is strongly ignorable given explainable variables, S is strongly 
ignorable given a propensity score:


Y ⫫ S |   Y ⫫ S | e(S)

X(e)

X(e)

X(e)

The effect of explainable variables is removed by dividing a dataset into 
strata in which propensity scores are similar	

training

dataset

strata 1
strata 2
strata 3

e(S) ∈ [0, 1/3)
e(S) ∈ [1/3, 2/3)
e(S) ∈ [2/3, 1]

[Calders+ 13]



Counterfactual Fairness: 
Total Fairness Criteria
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Total Effect and Total Variation
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[Zhang+ 18]

total causal effect of changing a sensitive feature, S, on a target, Y

intervention on a sensitive
S=0 



S=1

Y=0 



Y=?

change decision?

any direct and indirect causal paths are considered
Total Causal Effect




Interventional, sensitive values are controlled

TE(S=0,S=1) = Pr[Y=1 ∣ do(S=1)] − Pr[Y=1 ∣ do(S=0)]

Total Variation




Observational, equal to TE if a sensitive variable has no in-links
TV(S=0,S=1) = Pr[Y=1 ∣ S=1] − Pr[Y=1 ∣ S=0]



Counterfactual Fairness
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XS=s, S = s

XS=s′ 
, S = s′ 

Y = y

YS=s′ 
= y′ 

YS=s′ 
= y

Observations (Facts): If a sensitive feature is  and the 
corresponding non-sensitive features, , are given, an outcome, 

, is observed.

S = s
XS=s

Y = y

Counterfactuals: Even if a sensitive feature was changed so that 
 while holding the non-sensitive features fixed, it was fair if an 

outcome of a predictor is unchanged
S = s′ 

intervention:  S = s → S = s′ 

fair

unfair

[Kusner+ 17]



Counterfactual Fairness in Law
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Jack Gross, Petitioner, v. FBL Financial Services, US Supreme Court, 2008 
To establish a disparate-treatment claim under this plain language, a plaintiff  
must prove that age was the but-for cause of  the employer's adverse 
decision 
A plaintiff  must prove by a preponderance of  the evidence (which may be 
direct or circumstantial), that age was the but-for cause of  the challenged 
employer decision 



The but-for cause: After occurring X and Y, if X was not occurred, 
whether or not Y would be occur?

In a causal inference context, this is interpreted as probability of 
necessity, that is the probability of the counterfacutual, , is  
given facts  and .


YX=0 0
X = 1 Y = 1

Pr[YX=0 = 0 ∣ X = 1, Y = 1]

[Bareinboim+ 21, Pearl+ 18]



Predictors Enhancing 
Counterfactual Fairness
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[Kusner+ 17]

 is counterfactually fair if it is a function of the non-descendants of 




Learn a predictor from non-descendants of 


̂Y S

S
̂Y ∼ f(U, X⊁S)

observables that are non-descendants of S

Algorithm for learning a counterfactually fair predictor 
1. Data augmentation


For each training data, ,  data are randomly sampled from 
, which was derived from the causal graph


2. Generate a dataset,  



3. Learn a predictor, , from 

(si, xI, yi) m
Pr[U |S, X]

𝒟′ ={(u1,1, x⊁S,1, y1), …, (u1,m, x⊁S,1, y1), (u2,1, x⊁S,2, y2), …, (un,m, x⊁S,n, yn)}
f(U, X⊁S) 𝒟′ 



Association-based Fairness & 
Counterfactual Fairness
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[Kusner+ 17]

 = socioeconomic factor U = race S

 = neighborhood X  = # of arrests Y

unobservable (ex. police resources)

A region with more police resources increases # of arrests
 depends on  as well as on Y U S

Association-based: If training data were influenced by , in other 
words individuals had not equal opportunity, enhancing equalized 
odds cannot mitigate unfairness caused by 

Counterfactual: This approach can deal with such unfairness, 
because it predicts  and uses the predictions for mitigation 

U

U

U



Association-based Fairness & 
Counterfactual Fairness
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Legal Viewpoint [Ishiguro+ 14, Bareinboim+ 21]

Association-based Fairness Counterfactual Fairness

Ethical Viewpoint [Lippert-Rasmussen 06]

Association-based Fairness Counterfactual Fairness

Jack Gross, Petitioner, v. FBL Financial 
Services, US Supreme Court, 2008

Hazelwood School District v. 
United States, 433 U.S. 299 (1977)

Gross Statistical Parity but-for cause
What if the sensitive information 

had been different?
Outcomes should be equal


between groups

A harm-based account A baseline for determining

whether the discriminatees have been made worse off

CounterfactualIdeal outcome



Individual and Group Fairness 
in Counterfactual Fairness
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[Kusner+ 17, Zhang+ 18]

Counterfactual fairness defined by the Kusner et al. is individual

The personality of the individual is represented by features,  and 




This definition targets individuals whose features are  and 

X S

X = x S = s

Pr[YS=s = y ∣ X = x, S = s] = Pr[YS=s′ 
= y ∣ X = x, S = s]

This condition part represents a specific individual

=

Y

Expectation over individuals so that 

is considered as criterion of group fairness

S=s

Effect of Treatment on the Treated

ETT(S=0,S=1) = Pr[YS=1 =1 ∣ S=1] − Pr[Y=1 ∣ S=0]



Counterfactual Fairness: 
Path-Specific Fairness Criteria
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Standard Fairness Model
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 : sensitiveS  : targetY

 : unexplainableX(ē)

 : explainableX(e)

[Zhang+ 18]

✽ The model whose variables are all dependent, it is called extended standard fairness model

Standard Fairness Model : A basic model to deal with causal 
fairness based on path-specific analysis

Intervened

to test fairness

Observing the change 
of outcomes by 
intervention

Confounder, producing spurious correlation (ex. a department in the Berkley 
admission case), OR

Explainable mediator, legally allowed even if it passes the interventional effect 
(ex. genuine occupational requirement)

Unexplainable mediator, unfairly passed the interventional effect 

(ex. red-lining effect)



Path-Specific Fairness
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 : sensitiveS  : targetY

 : unexplainableX(ē)

 : explainableX(e)

Path-Specific Fairness depends on the causal path from a sensitive 
variable to a target variable 

Spurious Effect  Fair 
The influences of sensitive information 
is spurious or legaly-allowed

Direct Effect  Unfair 
sensitive information directly 
influences the target

Direct Effect  Unfair 
sensitive information indirectly 
influences the target through the 
unexplainable mediators



Economics-Based Fairness
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Game Theory: Fair Division
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Alice and Bob want to divide this swiss-roll FAIRLY

Alice and Bob get half each based on agreed common measure



Game Theory: Fair Division

127

Alice and Bob want to divide this swiss-roll FAIRLY

Total length of this swiss-roll is 20cm

20cm

Alice and Bob get half each based on agreed common measure



Game Theory: Fair Division
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Alice and Bob want to divide this swiss-roll FAIRLY

Alice and Bob get half each based on agreed common measure

10cm
10cm

divide the swiss-roll into 10cm each



Game Theory: Fair Division

128

Unfortunately, Alice and Bob don’t have a scale

envy-free division: Alice and Bob get a equal or larger piece 
based on their own measure



Game Theory: Fair Division
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Unfortunately, Alice and Bob don’t have a scale

Alice cuts the swiss-roll exactly in halves based on her own feeling

envy-free division: Alice and Bob get a equal or larger piece 
based on their own measure



Game Theory: Fair Division
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Unfortunately, Alice and Bob don’t have a scale

envy-free division: Alice and Bob get a equal or larger piece 
based on their own measure

Bob picks a larger piece based on his own feeling

Bob



Game Theory: Fair Division
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Fairness in a fair division context 
Envy-Free Division: Every party gets a equal or larger piece than 
other parties’ pieces based on one’s own measure


mi(Pi) ≥ mi(Pj), ∀i, j 
Proportional Division: Every party gets an equal or larger piece than 1/n 
based on one’s own measure; Envy-free division is proportional division


mi(Pi) ≥ 1/n, ∀i 
Exact Division: Every party gets a equal-sized piece


mi(Pi) = 1/n, ∀i

Every party i has one’s own measure mi(Pj) for each piece Pj 

Pi is the piece selected by the party i, and Pj's are not selected



Preferred Treatment
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[Zafar+ 17]

Preferred Treatment: A fairness criterion inspired by the notion of 
envy-freeness.  Each group receives more utilities from its own 
predictor than from any other groups' predictors


util(Θs) ≥ util(Θs′ 
), ∀s, s′ ∈ 𝒮

As predictor, a linear classifier, , is adopted

As , the probability of receiving advantageous decision, 

, and then it is convex-relaxed, 

Θ⊤
s x

util(Θs)
𝕀(sign(Θ⊤

s x) = 1) max(sign(0,Θ⊤
s x))

A learning task while enforcing preferred treatment




subject to 

min
Θs

∑
(s,x,y)∈𝒟

loss(x, y; Θs) + λsreg(Θs)

∑
x∈𝒟s

max(0,Θ⊤
s x) ≥ ∑

x∈𝒟′ s

max(0,Θ′ ⊤
s x), ∀s, s′ ∈ 𝒮
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Part Ⅲ 
Fairness-Aware Machine Learning



Fairness-Aware Machine Learning: 
Overview

132



Tasks of Fairness-Aware ML
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[Ruggieri+ 10]

Fairness-aware ML

Unfairness Discovery 
finding unfair treatments


Discovery from Datasets 
finding unfair data or 

subgroups in a dataset

Discovery from Models 
finding unfair outcomes of 

a blackbox model

Unfairness Prevention 
predictor or transformation 

leading fair outcomes

Taxonomy by Process 
pre-process, in-process, 

post-process

Taxonomy by Tasks 
classification, regression, 
recommendation, etc…



Unfairness Discovery from Datasets
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Datasets Records 
Subgroups

Unfairness Discovery from Datasets: Find personal records or 
subgroups that are unfairly treated from a given dataset

Research Topics 
Definition of unfair records or subgroups in a dataset

Efficiently searching patterns in the combinations of feature values

How to deal with explainable variables

Visualization of discovered records or subgroups

observe



Unfairness Discovery from Models
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Records 
Subgroups

Unfairness Discovery from Models: When observing outcomes 
from a specific black-box model for personal records or subgroups, 
checking fairness of the outcomes

Research Topics 
Definition of unfair records or subgroups in a dataset

Assumption on a set of black-box models

How to generate records to test a black-box model

Black-box 
Model

fair 
outcomes?

prove observe



Supervised Learning
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No

No

Yes

Yes

training data

classification 
rule

Is this an apple?

A pattern

between inputs

and decisions 

(labels)
inference based on


the learned rule

Learning Inference

Is this an apple?



fair sub-space

model sub-space
fair model sub-space

c
a

d b

1

2

true fair distribution

estimated fair
 distributionestimated

 distribution

true distribution

<latexit sha1_base64="Bn45TtXhJFeqna6E2oU8b5Z+dtw="></latexit>Pr[�,�, �]
<latexit sha1_base64="8oMjXC5GV55aDwCyoLn6/vQIQG8="></latexit>Pr[��,�, �]

<latexit sha1_base64="2RMSxD3Ct/J5pc07W1uI4ebKpFg="></latexit>Pr[ ���,�, �]
<latexit sha1_base64="8HWmJkWArpacO+QK1W+9zW+GnJ8="></latexit>Pr[ ��,�, �]

Unfairness Prevention: 
Pre-Process Approach

137

Pre-Process: potentially unfair data are transformed into fair data 1, 
and a standard classifier is applied 2


Any classifier can be used in this approach

the development of a mapping method might be difficult without 
making any assumption on a classifier



Unfairness Prevention: 
In-Process Approach

138

In-Process: a fair model is learned directly from a potentially unfair 
dataset 3


This approach can potentially achieve better trade-offs, because 
classifiers can be designed more freely

It is technically difficult to formalize an objective function, or to 
optimize the objective function.

A fair classifier must be developed for each distinct type of classifier

fair sub-space

model sub-space
fair model sub-space

c
a

d b

3

true fair distribution

estimated fair
 distributionestimated

 distribution

true distribution
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Unfairness Prevention: 
Post-Process Approach

139

Post-Process: a standard classifier is first learned 4, and then the 
learned classifier is modified to satisfy a fairness constraint 5


This approach adopts the rather restrictive assumption, 
obliviousness [Hardt+ 16], under which fair class labels are determined 
based only on labels of a standard classifier and a sensitive value

This obliviousness assumption makes the development of a fairness-
aware classifier easier

fair sub-space

model sub-space
fair model sub-space

c
a

d b5

4

true fair distribution

estimated fair
 distributionestimated

 distribution

true distribution
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Unfairness Discovery: 
Discovery from Datasets 

in Association-Based Fairness Cases

140



Support

( milk ∈ Item ) ∧ ( bread ∈ Item ) ⇒ ( egg ∈ Item ) 
Item : a set of simultaneously bought items

Association Rule

141

Association Rule

X ⇒ Y X : antecedent, Y : consequent

Ex:

[Agrawal+ 94]

If X is satisfied, Y is also satisfied with a high probability

A customer who buys milk (= X) and bread simultaneously

will buy an egg (= Y) with high probability

Confidence

# of data that satisfy X

total # of data

= Pr[X]support(X) = 

# of data that satisfy both X and Y

# of data that satisfy X 

= Pr[Y | X]conf(X, Y) = 



Unfair Association Rules
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[Pedreschi+ 08, Ruggieri+ 10]

Association rules extracted from a data set 
(a) city=NYC ⇒ class=bad (conf=0.25)


0.25 of NY residents are denied their credit application

(b) city=NYC ∧ race=African ⇒ class=bad (conf=0.75)


0.75 of NY residents whose race is African are denied their credit application

extended lift (elift)

the ratio of the confidence of a rule with  additional condition

to the confidence of a base rule

elift = conf( A ∧ B ⇒ C )

conf( A ⇒ C )

Direct Discrimination: a target directly depends on a sensitive feature

Pr[ loan=deny | city=NYC, race=African ] ≫ Pr[ loan=deny | city=NYC ]

α-protection: considered as unfair if there exists association rules 
whose elift is larger than α 

ex: rule (b) isn’t α-protected if a = 2, because elift = conf(b) / conf(a) = 3



Unfair Association Rules

143

Indirect Discrimination: a target depends on a sensitive feature 
through a non-sensitive feature

A target ‘loan’ does not directly depends on a sensitive ‘race’
Pr[ loan=deny | city=NYC, ZIP=10451 ] ≫ Pr[ loan=deny | city=NYC ]

‘loan=deny’ and ‘ZIP=10451’ are highly co-occurred 

[Pedreschi+ 08, Ruggieri+ 10]

Pr[ race=African | city=NYC, ZIP=10451 ] ～ high 
Pr[ ZIP=10451 | city=NYC, race=African ] ～ high

a target ‘loan’ in directly depends on a sensitive ‘race’

✽ Redescription: the same set of objects are described by two different formulae 
or descriptions	 [Miettinen+ 16]


Ex. A literal ‘city=NYC ∧ ZIP=10451’ is a redescription of ‘city=NYC ∧ race=African’



Situation Testing by k-NN

144

Situation Testing: When all the conditions are same other than a 
sensitive condition, people in a protected group are considered as 
unfairly treated if they received unfavorable decision

k-nearest neighbors 
of a protected member

[Luong+ 11]

The statistics of decisions in k-nearest neighbors of data points in a 
protected group

Condition of situation testing is 
Pr[ Y | , S=0 ] = Pr[ Y | , S=1 ] ≡ Y ⫫ S | X(e) X(e) X(e)

positive 
class

negative 
class

protected 
member

non-
protected 
member



Unfairness Discovery: 
Discovery from Models
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Gradient Feature Auditing

146

[Adler+ 16]

Direct Influence: comparing outputs when changing S

Blackbox

Model

Blackbox

Model

Indirect Influence: the influence of features correlated with S

sensitive is perturbed

original data(Xi, S)

(Xi, S′ )

Y

Y′ 

ignore the influence

if a feature in Xi is 
correlated with S

Blackbox

Model

Blackbox

Modelnon-sensitive is 

perturbed

original data(Xi, S)

(X′ i, S)

Y

Y′ 

measure the influence

of features in Xi 
correlated with S

Xi is perturbed so as not to predict S from the perturbed data X′ i



Unfairness Prevention: 
Classification (pre-process)

147



2. class labels are modified so that ratios of a positive class are balanced 
between sensitive groups


3. A final classifier is trained from the modified training dataset

Massaging

148

[Kamiran+ 12]

Massaging: Pre-process type method

A standard classifier is once applied, and class labels are modified 
so as to be balanced between sensitive groups

Finally, a standard classifier is trained from the modified dataset

1. A standard classifier is applied, and training data are sorted according 
to the degree to be a positive class for each sensitive group

- - + + + + + + + + + +

- - - - + +

non-protected S=1
protected S=0



vendor (data user)

Dwork’s Method (Individual Fairness)

149

data owner
loss function

representing utilities 
for the vendor

original data

fair decision

[Dwork+ 12]

archtype
Data Representation 

min loss function 
s.t. fairness constraint

�(�)
<latexit sha1_base64="8LNcuxH7TQ6/hxmbCITSu/lf96c="></latexit>

distance between archtypes distance between original data
Lipschitz condition: similar data are mapped to similar archtypes

Individual Fairness: Treat like cases alike

1. Map original data to archtypes so as to satisfy Lipschitz condition

2. Make prediction referring the mapped architypes

L(x, y)

D(M(x1), M(x2)) ≤ d(x1, x2)



Dwork's Method (Statistical Parity)
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[Dwork+ 12]

Statistical Parity: protected group, , and non-protected group, , are 
equally treated




Mean of protected archtypes and mean of non-protected archtypes 
should be similar

S S̄

mean of non-protected archtypesmean of protected archtypes

D(μS, μS̄) ≤ ϵ

If original distributions of both groups are similar, Lipschitz condition 
implies statistical parity

If not, statistical parity and individual fairness cannot be satisfied 
simultaneously


To satisfy statistical parity, protected data are mapped to similar 
non-protected data while the mapping is as uniform as possible



Learning Fair Representations

151

[Zemel+ 13]

original data prototypes class

xi vk

data are probabilistically 
assigned to each prototype

prototype is the mean 
of assigned data

̂yi

classes are predicted 
from prototypes

Maps to prototypes are learned so as to maximize these requirements

Requirements for Prototypes 
Probabilities assigned to each prototype is equal between groups


Original data should be close to the data recovered from prototypes


Classes predicted from prototypes should close to original classes
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Removing Disparate Impact

152

[Feldman+ 15]

Distributions of the j-th feature are matched

between datasets whose sensitive feature is S=0 and S=1

Feature values are modified so as to minimize the sum of the L1 
distances the modified cumulative distribution function (CDF) from 
original CDFs

CDF(S=0)
CDF( the modified )

CDF(S=1)F−1(X(0)
j )

F−1(X(1)
j )

x′ ij x(1)
ijx(0)

ij
original original modified 

corresponding to

the sum of these areas



Unfairness Prevention: 
Classification (in-process)

153



Prejudice Remover Regularizer
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−∑s ∑𝒟(s) ln Pr[y ∣ x; Θ(s)] + λ
2 ∑s ∥Θ(s)∥ + η I(Y; S)

[Kamishima+ 12]

Prejudice Remover: a regularizer to impose a constraint of 
independence between a target and a sensitive feature, Y ⫫ S

A class distribution, , is modeled by a set of logistic 
regression models, each of which corresponds to s ∈ Dom(S) 

 

As a prejudice remover regularizer, we adopt a mutual information 
between a target and a sensitive feature, I(Y; S)

Pr[Y ∣ X; Θ(s)]

Pr[Y = 1 |x; Θ(s)] = sig(w(s)⊤x)

fairness parameter to adjust a balance between accuracy and fairness

The objective function is composed of

classification loss  and  fairness constraint  terms



Fairness of Actual Class Labels
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Even if Y and S are independent, actual class labels may not 
satisfy a fairness constraint

[kamishima+ 18]

model bias: Models doesn’t contain true distribution to learn in 
general

deterministic decision rule: Class labels are generated not 
probabilistically, but deterministically by a decision rule

E[
Pr

[Y
, S

] -
 P

r[Y
]P

r[S
]]

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Pr[Y=1]
0 0.5 1.0

Always Independent 
Labels probabilistically 
generated according to 


Pr[Y] Pr[S] Pr[X | Y, S]

Not Independent in 
general 

Bayes optimal Labels are 
generated by a  
deterministic 

decision rule:

Difference: Pr[Y, S] − Pr[Y] Pr[S]

y< } argmax
y

Pr[yx, s]



Model-Based & Actual Independence
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Model-based Independence: Class labels are assumed to be 
generated probabilistically

	 ̂Y∘ ⫫ S, where ( ̂Y∘, S) ∼ Pr[ ̂Y∘, S]

[Kamishima+ 18]

Actual Independence: Class labels are assumed to be 
deterministically generated by applying a decision rule



Ỹ∘ ⫫ S, where (Ỹ∘, S) ∼ Pr[Ỹ∘, S] = ∑s Pr[s] 1
n ∑x∈𝒟s

Pr[Ỹ |x, s]

{
Pr[ ̂ỹ = 1 |x, s] = 1 if  ̂ỹ = arg maxy Pr[ ̂y |x, s]
Pr[ ̂ỹ = 0 |x, s] = 0 otherwise

satisfy actual independence instead of model-based independence




Fairness in class labels can be greatly improved



Correlation-based Fairness
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[Zafar+ 2017]

Quantify unfairness by covariance, proportional to correlation





This constraint is convex, helpful for the easy optimization

•  is a signed distance from  to the decision boundary, and is equal to 

 in a linear model with a parameter 

Cov(Y, S) = E[YS] − E[Y ] E[S]
= E[dθ(x)(s − S̄)] − E[dθ(x)]E[s − S̄]
= 1

N ∑N
i (si − S̄) dθ(x)

dθ(x) x
dθ(x) = θ⊤x θ

minimize accuracy loss under fairness constraints

maximize fairness under accuracy constraints

minθ loss(θ) s . t . |Cov(Y(θ), S) | ≤ η

minθ |Cov(Y(θ) | s . t . loss(θ) ≤ (1 + η) loss(θ*)

trade-off parameter
accuracy loss


ex. negative log likelihood

optimal loss

without fairness constrains



Adversarial Learning
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[Zhang+ 18]

gradient-based learner for fairness-aware prediction

predictor 
̂Y = fP(X; Θ)

adversary 
̂S = fA( ̂Y; Φ)

̂YX ̂S

Predictor minimizes , to predict outputs as accurately 
as possible while preventing adversary's objective

Adversary minimizes , to violate fairness condition

lossP(Y, ̂Y; Θ)

lossA(S, ̂S; W, V )

∇ΘlossP − proj∇ΘlossA
∇ΘlossP

∇ΘlossA

∇ΘlossP

beneficial for adversary's objective

accurate prediction &

not beneficial for adversary

for accurate

prediction

∇ΘlossP − proj∇ΘlossA
∇ΘlossP

−η∇ΘlossA

gradient of 
Θ
∇ΘlossP − proj∇ΘlossA

∇ΘlossP − η∇ΘlossA

preventing

adversary's objective



Adversarial Learning
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[Adel+ 19, Edwards+ 16]

X Z

S

Y

encoder

classifier

adversaryembedding

to reveal a sensitive feature  from an embedding S Z

to predict a target  
from an embedding 

Y
Z

to generate an embedding  
so that  is predicted accurately,


while preventing to reveal 

Z
Y

S

neural network for fairness-aware classification

To prevent the prediction of , gradients from a classifier is 
propagated straightforward, but those from an adversary is multiplied 
by  in backpropagation

S

−1



Adversarial Learning
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[Edwards+ 16, Madras+ 18]

X
Z

S

Yencoder classifier

adversaryembedding

to reveal a sensitive feature S

to predict a target Yto generate an embedding Z
NN for fair classification and generating fair representation

An embedding  is generated so that

minimize the reconstruction error between  and 

minimize the prediction error of the classifier

maximize the prediction error of the optimized adversary

Z
X X′ 

decoderX′ 

to reconstruct an input X

original input

reconstructed input



Unfairness Prevention: 
Classification (post-process)
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Calders-Verwer’s 2-Naive-Bayes
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Naive Bayes Calders-Verwer Two 
Naive Bayes (CV2NB)

S and X are conditionally 
independent given Y

non-sensitive features in X are 
conditionally independent 
given Y and S

[Calders+ 10]

✽ It is as if two naive Bayes classifiers are learned depending on each value of the 
sensitive feature; that is why this method was named by the 2-naive-Bayes

Unfair decisions are modeled by introducing

the dependence of X on S as well as on Y

Y

XS

Y

XS



while Pr[Y=1 | S=1] - Pr[Y=1 | S=0] > 0 
if # of data classified as “1” < # of “1” samples in original data then


	 	 increase Pr[Y=1, S=0], decrease Pr[Y=0, S=0]

else 

	 	 increase Pr[Y=0, S=1], decrease Pr[Y=1, S=1]

	 reclassify samples using updated model Pr[Y, S]

Calders-Verwer’s 2-Naive-Bayes
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keep the updated marginal distribution close to the Pr[ ̂Y ]

update the joint distribution so that its fairness is enhanced

[Calders+ 10]

estimated model:  Pr[ ̂Y, S] fair estimated model: Pr[ ̂Y∘, S]fairize

parameters are initialized by the corresponding sample distributions

is modified so as to improve the fairness

´Pr[ ̂Y, X, S] = Pr[ ̂Y, S]∏i Pr[Xi | ̂Y, S]

ÇPr[Y ,S]



Hardt's Method
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[Hardt+ 16]

Given unfair predicted class, , and a sensitive feature, , a fair class, , 
is predicted maximizing accuracy under an equalized odds condition

✽ True class, , cannot be used by this predictor 

̂Y S Y∘

Y

tru
e 

po
sit

iv
e 

ra
te

 (T
PR

) P
r[Y

∘ =1
∣S

=s
,Y

=1
]

false positive rate (FPR) Pr[Y ∘=1 ∣ S=s, Y=0]

perfectly accurate point

FPR & PPR

can be matched



satisfying

equalized odds

the most 
accurate


point satisfying

an equalized 

odds  condition

feasible region

for S=0

feasible region

for S=1

{Pr[Y ∘=1 ∣ ̂Y=1,S=1] = 1.0
Pr[Y ∘=1 ∣ ̂Y=0,S=1] = 0.0 {Pr[Y ∘=1 ∣ ̂Y=1,S=1] = 1.0

Pr[Y ∘=1 ∣ ̂Y=0,S=1] = 1.0

{Pr[Y ∘=1 ∣ ̂Y=1,S=1] = 0.0
Pr[Y ∘=1 ∣ ̂Y=0,S=1] = 1.0

{Pr[Y ∘=1 ∣ ̂Y=1,S=1] = 0.0
Pr[Y ∘=1 ∣ ̂Y=0,S=1] = 0.0



Unfairness Prevention: 
Recommendation
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Recommender System

166

Recommenders: Tools to help identify worthwhile stuff
[Konstan+ 03]

Find Good Items Predicting Ratings
[Herlocker+ 04, Gunawardana+ 09]

✽ Screen-shots are acquired from Amazon.co.jp and Movielens.org on 2007-07-26 

Ranking items according to 
users' preference, to help for 

finding at least one target item

Presenting items with 
predicted ratings for a user, to 

help for exploring items



Collaborative Filtering
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✽ There are other approaches: content-based filtering or knowledge-based filtering

Collaborative filtering is a major approach for predicting users' 
preference in a word-of-mouth manner

recommending items liked by those who having similar preferences

Any good

 sushi


restaurant?

I'll go to

the “Taro”

The “Taro”

is awesome

They like 
the “Taro” restaurant

people who like 
similar tastes of sushi

I like the “Taro”

[Resnick+ 94]



Adherence to Laws and Regulations
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[Sweeney 13]

A recommendation service must be managed 
while adhering to laws and regulations

suspicious placement in keyword-matching advertisements

Advertisements indicating arrest records were more frequently 
displayed for names that are more popular among individuals of 

African descent than those of European descent

↓


Socially discriminative treatments must be avoided

sensitive feature = users’ demographic information 
 

Legally or socially sensitive information

can be excluded from the inference process of recommendation



Fair Treatment of Content Providers
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System managers should fairly treat their content providers

The US FTC has investigated Google to determine whether the search 
engine ranks its own services higher than those of competitors

Fair treatment in search engines

sensitive feature = a content provider of a candidate item 
↓


Information about who provides a candidate item can be ignored,

and providers are treated fairly

Fair treatment in recommendation
A hotel booking site should not abuse their position to recommend 
hotels of its group company

[Bloomberg]



Exclusion of Unwanted Information
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[TED Talk by Eli Pariser, http://www.filterbubble.com/]

sensitive feature = a political conviction of a friend candidate 
↓


Information about whether a candidate is conservative or progressive

can be ignored in a recommendation process

Filter Bubble: To fit for Pariser’s preference, conservative people are 
eliminated from his friend recommendation list in Facebook

Information unwanted by a user is excluded from recommendation



Intrinsic trade-off 

To select something is not to select other things

RecSys 2011 Panel on Filter Bubble

171

[RecSys 2011 Panel on the Filter Bubble]

providing

a diversity of topics

focusing on

users’ interests

RecSys 2011 Panel on Filter Bubble

Are there “filter bubbles?”

To what degree is personalized filtering a problem?

What should we as a community do to address the filter bubble 
issue?


http://acmrecsys.wordpress.com/2011/10/25/panel-on-the-filter-bubble/



Personalized filtering is a necessity 

Personalized filtering is a very effective tool

to find interesting things from the flood of information

recipes for alleviating 
undesirable influence of personalized filtering


capture the users’ long-term interests

consider preference of item portfolio, not individual items

follow the changes of users’ preference pattern

give users to control perspective to see the world through other 
eyes

RecSys 2011 Panel on Filter Bubble
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[RecSys 2011 Panel on the Filter Bubble]



Multistakeholder in Recommendation
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Consumer: End-users who receive recommendation


Applicants want to be highly evaluated their own experience or skills

Provider: Entities that supply recommended objects


Employers should  be exposed frequently

System: A platform who manages a recommender system


Increasing job-matchings is beneficial for the system owner




These fairness constraints might conflict 
Equal exposure of employers




Employers can be recommended less matched employers frequently

Less matches reduces the profit of the system owner

Utilities of multiple stakeholders 
example cases in job recommendation

[Abdollahpouri+ 20]



Recommendation Independence
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No information about a sensitive feature influences the outcome

The status of the sensitive feature is explicitly excluded from the 
inference of the recommendation outcome

Recommendation Independence 
statistical independence 

between a recommendation outcome, R, and a sensitive feature, S

Independence-Enhanced Recommendation 
Preferred items are predicted


so as to satisfy a constraint of recommendation independence

Pr[R | S] = Pr[R] ≡ R ⫫ S

[Kamishima+ 12, Kamishima+18]



Probabilistic Matrix Factorization
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̂r(x, y) = μ + bx + cy + pxqy⊤

Probabilistic Matrix Factorization Model 
predict a preference rating of an item y rated by a user x


well-performed and widely used

[Salakhutdinov+ 08, Koren 09]

For a given training dataset, model parameters are learned by 
minimizing the squared loss function with an L2 regularizer

cross effect of

users and itemsglobal bias

user-dependent bias item-dependent bias

∑𝒟 (ri − ̂r(xi, yi))2 + λ∥Θ∥

Prediction Function

Objective Function

L2 regularizer

regularization parameter

squared loss function



Independence Enhanced PMF
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a prediction function is selected according to a sensitive value 

sensitive feature

Çr(x, y, s) = �(s) + b(s)x + c(s)y + p(s)x q(s)y
Ò

Prediction Function

Objective Function

≥D (ri * Çr(xi, yi))2 * ⌘ indep(R,S) + � Ò⇥Ò2

independence parameter: control the balance 
between the independence and accuracy

independence term: a regularizer to constrain independence

The larger value indicates that ratings and sensitive values are 

more independent

Matching means of predicted ratings for two sensitive values

[Kamishima+ 12, Kamishima+ 13, Kamishima+ 18]



Independence Terms
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Mutual Information with Histogram Models [Kamishima+ 12]

computationally inefficient


Mean Matching [Kamishima+ 13]




matching means of predicted ratings for distinct sensitive groups

improved computational efficiency, but considering only means


Mutual Information with Normal Distributions [Kamishima+ 18]




Distribution Matching with Bhattacharyya Distance [Kamishima+ 18]




These two terms can take both means and variances into account, 
and are computationally efficient

*
�
mean

�D(0)� *mean
�D(1)��2

*

⇠
H (R) *

≥
s Pr[s] H (Rs)

⇡

*
⇠
* ln î ˘

Pr[rS=0] Pr[rS=1]dr
⇡



Latent Class Model
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Prediction:

[Hofmann 99]

z

y

x

r

Latent Class Model: A probabilistic model for collaborative filtering

basic topic model, pLSA

extended so as to be able to deal with 

ratings r given by users x to items y

Çr(x, y) = EPr[rx,y][level(r)]
= ≥

r Pr[rx, y] level(r)
the r-th rating value

A rating value can be predicted by the expectation of ratings

Model parameters can be learned by an EM algorithm

latent topic variable



Independence-Enhanced LCM
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z

y

x

r

s

z

y

x

r

s

Independence-Enhancement by a Model-based Approach 
A sensitive variable is embedded into the original LCM


A rating and a sensitive variable are mutually independent

A user, an item, and a rating are conditionally independent given Z

Type 1 model Type 2 model

Experimental results show that the performance of these two models 
are nearly equal

[Kamishima+ 16]



Unfairness Prevention: 
Ranking

180



Ranking
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Ranking: select k items and rank them according to the relevance to 
users' need

A fundamental task for information retrieval and recommendation

Step 2: Rank Items

Step 1: Calculate Relevance Score
Relevance Score: the degree of relevance to user's need


Information Retrieval: relevance to the user's query

Recommendation: user's preference to the item

1.0 0.9 0.7 0.10.30.51.0

sort according to their relevance scores
select top-k items

irrelevant itemsrelevant items



FA*IR
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Fair Ranking: for each rank i = 1, …, k, the ratio between two sensitive 
groups must not diverged from the ratio in the entire candidate set

[Zehlike+ 17]

1. Generate ranking lists for each sensitive group

2. Merge two ranking lists so as to the satisfy fair ranking condition

1.0 0.9 0.31.01.0

0.7 0.5
1.0 0.91.01.0 0.7

Ranking list 
within each sensitive group

Merged Ranking list

This item is less relevant,

but it is prioritized to maintain fairness



Singh's Method
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[Singh+ 2018]

Step 1: optimize  by solving the linear programming problemP

minP ∑di∈𝒟 ∑N
j=1 u(di ∣ q)Pi,jvj

prob. of the document di ranked at the j-th position

prob. matrix of Pi,j relevance of the document di to the query q

values of  the j-th position

ex. vj = 1/log( j + 1)

subject to:	  satisfies the constraints of probabilities

	 and the following fairness constraint (statistical parity)

P

∑di∈𝒟 ∑N
j=1 ( I(di ∈ 𝒟0)

|𝒟0 | − I(di ∈ 𝒟1)
|𝒟1 | )Pi,jvj = 0

# of documents in a sensitive group 0 # of documents in a sensitive group 1

the document di is a member of the sensitive group 0 the document di is a member of the sensitive group 1

Singh's method is an in-process type ranking algorithm

Step 2: By applying the Birkhoff-von Neumann decomposition to ,

get probability masses of corresponding rankings

P



Unfairness Prevention: 
Other Tasks
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Bias in Word Embedding
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[Bolukbasi+ 16]

Word Embedding: vector representing semantics of words

The differences of vectors reflect analogy of the corresponding words


he − she = king − queen

Extreme she 
1. homemaker

2. nurse

3. receptionist

4. librarian

5. socialite

6. hairdresser

7. nanny

8. bookkeeper

9. stylist

10. housekeeper

Extreme he 
1. maestro

2. skipper

3. protege

4. philosopher

5. captain

6. architect

7. financier

8. warrior

9. broadcaster

10. magician

Occupational stereotype 
Occupational words whose embeddings are 
the 10 nearest from the word embeddings of 
she or he

Word embeddings are unfair due to the 
gender bias in the training corpus 

Debiasing Embeddings 
neutralize: non-gender words are uncorrelated to gender vector

equalize: equal distance from occupational words to gender words



Fairness GAN: Fair Data Generator
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[Sattigeri+ 19]

Dataset

Generator (Xf , Yf )

(Xr, Yr, Sr)

(S, Rnd)

{Pr[DX ∣ X]
Pr[DXY ∣ X, Y ]
Pr[S ∣ X]
Pr[S ∣ Y ]

Discriminator

real data

generated fake datarandom seed

real or fake?

generative adversarial network for fair data generation

Likelihood to maximize
ℒ(DX |Xr, f ) + ℒ(DXY |Xr, f , Yr, f )
−(ℒ(DX |Xf ) + ℒ(DXY |Xf , Yf ))

+ℒ(S |Xr)
+ℒ(S |Xf ) −ℒ(S |Yf )

+ℒ(S |Yr)Discriminator

Generator

Discriminator predicts whether real or fake,

but generator prevents it




generating high-quality data

data conditioned on

input sensitive value

Preventing to predict  from 




Ensuring statistical parity

S Y



Bandit problem: maximize the cumulative rewards of selected arms

Fair Bandit
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[Joseph+ 16]

player bandits
reward of the selected arm

select one of arms

If an arm that is selected initially returns a high-reward by chance,

the other arms can be less frequently selected

original UCB fair UCB
always select the arm whose upper 
confidence bound is the maximum

select arms whose confidence 
intervals overlap with equal prob.

deterministically

select

select with

equal probability



Non-Redundant Clustering
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[Gondek+ 04]

ignore information unwanted by a user

A simple clustering method finds two 
clusters: one contains only faces, and the 
other contains faces with shoulders 

A data analyst considers this clustering is 
useless and uninteresting

By ignoring this uninteresting information, 
more meaningful female- and male-like 
clusters could be obtained

non-redundant clustering: find clusters that are as independent 
from a given uninteresting partition as possible

clustering facial images

The influence of uninteresting information can be ignored
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Part Ⅳ 
Other Topics



Mitigation of a Sample Selection Bias
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Zadrony's Theorem
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[Zadrozny 04]

 is sampled and observed if ; it is not sampled if (x, y) z = 1 z = 0
 : i.i.d. data  no problem


 : sampled depending on   replacing prior 

 : sampled depending on 


 assumption of this theory: The values of  influence whether or 
not a datum is observed, but those of  do not 



Under the assumption of  and , local learners are 
NOT affected by a sample selection bias, but global learners are 

Local: the output of learner depends only on  
• full Bayes, logistic regression, hard-margin SVM

Global: the output of learner depends on both  and 

• naïve Bayes, decision trees, soft-margin SVM

(x, y) ⫫ z
x ⫫ z ∣ y y Pr[Y ]
y ⫫ z ∣ x x

X
y

y ⫫ z ∣ x Pr[x] > 0

Pr[y ∣ x]

Pr[y ∣ x] Pr[x]



Zadrony's Theorem
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[Zadrozny 04]

loan

application

declined

approved
default

full payment

unknown : unobservedz = 0
Only  is observed for

both z=0 and z=1 data

x
 and  are observed

only for  data 

y x
z = 1

loan application : observedz = 1

Under the assumption of  and , a likelihood function, 
, is unbiased, even if it is learned only from 

 can be estimated from 

y ⫫ z ∣ x Pr[x] > 0
Pr[y ∣ x] approved data

Pr[z ∣ x] all applicants data

A leaner free from a sample selection bias can be trained

by maximizing the weighted log-likelihood


max
Θ ∑

z=1data

Pr[z = 1]
Pr[z = 1 ∣ x] log Pr[y ∣ x; Θ]



Covariate Shift
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[Shimodaira 00]

Predictors might be applied to data distributed differently from a 
distribution that it has been trained




Covariate Shift:  is different between test and training, but 

 is same
Pr[X, S]

Pr[y ∣ X, S]

A distribution of  in training is , and that in test is 




Given a joint distribution of  and  in training,  and , that in test is:


S Pr[S] P̃r[S]

X S Pr[X ∣ S]
P̃r[X, S] = ∑s

P̃r[S]
Pr[S] Pr[X ∣ S]

Under the covariate shift assumption, a predictor maximizing the 
weighted log-likelihood is unbiased


max
Θ ∑

x,s,y

P̃r[x, s]
Pr[x, s] log Pr[y ∣ x; Θ]



Disclosure
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Misuse of the COMPAS score
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Paul Zilly heard his COMPAS score, and his lawyer agreed to a plea 
deal of one year imprisonment, in a court in Barron County, Wisconsin




Judge James Babler had seen Zilly's high-risk score, and the judge 
overturned the deal and imposed two year imprisonment




In an appeal hearing, the developer of the COMPAS, Brennan, testified 
that the COMPAS was designed not for sentencing




Zilly’s sentence was reduced to 1.5 years imprisonment

[Angwin+ 16]

In theory, the COMPAS is designed to determine which defendants 
are eligible for probation or treatment programs




Like this case, the disclose of the design intent of the model is 
important for correcting such a misuse



For a Proper Use of the ML
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Quality Control as in Other Industrial Products 
Design: datasets, algorithms

Test: performance test, explainable ML

Maintenance: monitoring, model updation

How to use ML techniques as a tool properly

Given a fairness criterion,

an algorithm meats to the criterion can be built

Disclosing which criterion the algorithm is designed to satisfy, 
and why the criterion is proper for the target task

✽ In a case of the COMPAS, the US court adopts the sufficiency 
criterion based on the federal Post Conviction Risk Assessment



Model Card: standardizing 
ethical practice and reporting

Model Card - Smiling Detection in Images

Model Details
• Developed by researchers at Google and the University of Toronto, 2018, v1.
• Convolutional Neural Net.
• Pretrained for face recognition then �ne-tuned with cross-entropy loss for binary
smiling classi�cation.

Intended Use
• Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically �nding smiling photos.

• Particularly intended for younger audiences.
• Not suitable for emotion detection or determining a�ect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors
• Based on known problems with computer vision face technology, potential rel-
evant factors include groups for gender, age, race, and Fitzpatrick skin type;
hardware factors of camera type and lens type; and environmental factors of
lighting and humidity.

• Evaluation factors are gender and age group, as annotated in the publicly available
dataset CelebA [36]. Further possible factors not currently available in a public
smiling dataset. Gender and age determined by third-party annotators based
on visual presentation, following a set of examples of male/female gender and
young/old age. Further details available in [36].

Metrics
• Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted
to be positive and negative, respectively, are also reported. [48]

• Together, these four metrics provide values for di�erent errors that can be calcu-
lated from the confusion matrix for binary classi�cation systems.

• These also correspond to metrics in recent de�nitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for di�erent metrics corre-
spond to di�erent fairness criteria.

• 95% con�dence intervals calculated with bootstrap resampling.
• All metrics reported at the .5 decision threshold, where all error types (FPR, FNR,
FDR, FOR) are within the same range (0.04 - 0.14).

Training Data
• CelebA [36], training data split.

Evaluation Data
• CelebA [36], test data split.
• Chosen as a basic proof-of-concept.

Ethical Considerations
• Faces and annotations based on public �gures (celebrities). No new information
is inferred or annotated.

Quantitative Analyses

Caveats and Recommendations
• Does not capture race or skin type, which has been reported as a source of disproportionate errors [5].
• Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a
spectrum of genders.

• An ideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment
(lighting/humidity) details.

Model Card
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[Mitchell+ 19]

Model Details 
(developper, date, version, …)

Intended Use

Quantitative Analysis

Metrics

(summary statistics, performance)

Factors (features, evaluation factors, …)

Training Data

Test Data

Ethical Considerations

Caveats and Recommendation



Datasheet for Datasets
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[Gebru+ 21]
Datasheet for Datasets


Standardized process for documenting datasets

Intended to consider potential risks and underlying assumptions

Dataset creators should answer the 57 questions 
at 7 stages of creating a dataset

motivation

purpose, creator, 

funding

collection process

method, instruments, sampling, data 
operators, collection period, ethical 
review, directly collected, consent, 

cancel agreement, influence

composition

content, size, sampling, features, 

missing info, splits, noises, external 
datasets, confidentiality, offensiveness, 
demographics, identity, sensitive info

preprocessing 
/ cleaning / 

labeling

methods, raw data, 

software

Uses

use cases, repository, 
possible use cases, 

influence of 
preprocess, 

prohibited cases

distribution

distributer, method, 

date, license, 
limitation, regulation

maintenance

maintainer, contact info, errata, 

updates, restrictions by 
subjects, older version, third-

party updates



Other 
Fairness-Aware Machine Learning  

Topics

199



Bandwagon Effect
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Bandwagon Effects in ML 
A bias in prediction by ML methods can produce a phenomenon,


“richer gets richer”

Users’ cognitive bias 
If others think that something is good, then I should, too

[Sundar+ 08]

Algorithms’ inductive bias 
popularity bias: A recommender system tends to select popular items

[Celma+ 08]
+

Incorrectly higher-rated items can be more popular,

because a recommendation algorithm selects them




A undesirable feedback loop caused by undesired selection

[Fleder+ 07]



Relation to 
Other Machine Learning Topics
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Privacy-Preserving Data Mining
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Fairness in Machine Learning 
the independence between an objective Y and a sensitive feature S

from an information theoretic perspective, 
mutual information between Y and S is zero: I(Y; S) = 0

from the viewpoint of privacy-preservation, 
protection of sensitive information if an objective is exposed

Difference from PPDM 
introducing randomness is occasionally inappropriate for severe 
decisions, such as job application

disclosure of identity isn’t problematic in FAML, generally



Cost-Sensitive Learning
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Cost-Sensitive Learning: learning classifiers so as to optimize 
classification costs, instead of maximizing prediction accuracies




FAML can be regarded as a kind of cost-sensitive learning that 
pays the costs for taking fairness into consideration

[Elkan 01]

Cost matrix C(i | j): cost if a true class j is predicted as class i 
Total cost to minimize is formally defined as (if class Y = 1 or 0):

	 


An object x is classified into the class i whose cost is minimized

ℒ(x, i) = ∑j Pr[ j |x]C(i | j)



Theorem 1 in [Elkan 2001]

If negative examples in a data set is over-sampled by the factor of 





and a classifier is learned from this samples, a classifier to optimize 
specified costs is obtained

C(1 |0)
C(0 |1)

Cost-Sensitive Learning
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✽ This over-sampling technique is simple and effective for avoiding 
unfair decisions, but its weak point that it completely ignores non-
sensitive features

[Elkan 01]

In a FML case, an over-sampling technique is used for avoiding unfair 
treatments




A corresponding cost matrix can be computed by this theorem,

which connects a cost matrix and the class ratio in training data



Other Connected Techniques
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Legitimacy / Leakage 
Machine learning models can be deployed in the real world


Independent Component Analysis 
Transformation while maintaining the independence between 
features


Surrogate Data 
To perform statistical tests, specific information is removed from 
data sets


Dummy Query 
Dummy queries are inputted for protecting users’ demographics 
into search engines or recommender systems


Visual Anonymization 
To protect identities of persons in images, faces or other 
information is blurred



Software
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Software Frameworks
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Non-enterprise Software 
AI Fairness 360 (IBM)

Fairlearn (Microsoft)

What-If Tool, ML-fairness-gym (Google)

Commercial Packages: DataRobot, Fiddler AI

Non-commercial Packages: FairTest, Fairness Measures, Aequitas, 
Fairkit-learn


Enterprise Software 
LinkedIn Fairness Toolkit (LinkedIn)

Amazon SageMaker (Amazon)



AI Fairness 360
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AI Fairness 360 (AIF360): https://github.com/Trusted-AI/AIF360

Software packages for measuring and mitigating fairness

Developed by IBM, implemented in Python

Dataset class: In addition to the information required for standard 
ML algorithms, the sensitive information is maintained, and dealing 
with CSV files or a Pandas DataFrame

Metric class: Evaluate the achievement of the target fairness criteria 

Explainer class: Report fairness 
metric in a text or JSON format, 
including Web interface


Bias Mitigating Algorithms: 4 pre-processing, 2 in-processing, and 
3 post-processing algorithms


✽ These documented specifications might be updated in the latest version

[Bellamy+ 19]

before mitigation after mitigation



Fairlearn
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Fairlearn: https://fairlearn.org/

Developed by Microsoft, implemented in 
Python

Mitigating allocation harms and quality-of-
service harms


Interactive visualization dashboard

Visualize the disparities between sensitive 
groups


Unfairness mitigation algorithms

Hardt's method: Tuning decision 
boundaries for each sensitive group to 
minimize the disparity between the groups

Reduction algorithms: Iterate re-weighting data points and re-
training models, to minimize the disparity between sensitive groups


✽ These documented specifications might be updated in the latest version

[Bird+ 20]  



Offline Component Online Component

LinkedIn Fairness Toolkit
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[Vasudevan+ 20]

LinkedIn Fairness Toolkit (Lift): https://github.com/linkedin/LiFT

Enterprise software for measuring and mitigating fairness

Developed by LinkedIn

implemented in Scala, parallel computation using  the Apache Spark

Check whether a collected dataset 
represents original population before 
training

Tune hyperparameters to satisfy fairness 
criteria while training

Check the trained model and mitigate 
unfairness

Watch the performance of deployed 
model to avoid model or data drifts



Evidence-Based Decision Making
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Biased Algorithms Are Easier to Fix 
Than Biased People
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Once proper regulation is in place,

better algorithms can help to ensure equitable treatment in our society

The data for training and test are carefully stored,

and regulatory agency with trained auditors process data

[Mullainathan 19]

People: It takes several 
months to get one data

Algorithm: Massive data 
can be collected easily

Algorithms' biaes are easier to detect than people's biases

Biased algorithms are easier to fix than biased people

People: The cause of biased 
decision cannot be cleared 
up, and evidences showed 
that training is useless for 
fixing the biases

Algorithm: The cause of 
biased decision is 
detectable, and the biases 
can be fixed 



The Three I's Problem
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 3I: Ideology, Ignorance, Inertia 
why policies fail and why aid does not have the 
effect it should

The nurses’ workload was based on an ideology that 
wants to see nurses as dedicated social workers, designed 
in ignorance of  the conditions on the ground, that lives 
on, mostly just on paper, because of  inertia. 

If  we resist the kind of  lazy, formulaic thinking that 
reduces every problem to the same set of  general 
principles; … if  we accept the possibility of  error and 
subject every idea, …, to rigorous empirical testing, then 
we will be able not only to construct a toolbox of  
effective policies but also to better understand why the 
poor live the way they do.

[Banerjee+ 11]

Importance of evidence-based decision making
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